Verification and Parallelism in Intro CS

Dan Licata
Wesleyan University
Starting in 2011, Carnegie Mellon revised its intro CS curriculum

• Computational thinking [Wing]
• Specification and verification
• Parallelism
CMU Intro Courses

Fundamentals of Computing

- Imperative Computation
- Functional Computation

- Computer Systems
- Data Structures and Algorithms
- Software Construction
CMU Intro Courses

Fundamentals of Computing

- Imperative Computation
- Functional Computation

- Computer Systems
- Data Structures and Algorithms
- Software Construction
Course Design

• Imperative computation (Fa’11):
 Frank Pfenning, Tom Cortina, William Lovas

• Functional computation (Sp’11):
 me, Bob Harper

• Data structures and algorithms (Fa’12):
 Guy Blelloch, Margaret Reid-Miller, Kanat Tangwongsan

taught and refined by many people since!
Status

• First group of students just graduated
• Courses are generally well-liked
• Anecdotally, students seemed stronger than before in some upper-level classes
• Preliminary studies by Carol Frieze indicate they preserve the women-CS fit at CMU
My role

• Designed Functional Computation
• Taught Spring’11, Fall’11, Spring’12
• Now at Wesleyan
• Taught Imperative Computation this spring; teaching Imperative next fall and Functional next spring
<table>
<thead>
<tr>
<th>CMU</th>
<th>Wesleyan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premier tech school</td>
<td>Liberal arts school, strong in sciences</td>
</tr>
<tr>
<td>Students admitted to CS</td>
<td>Not</td>
</tr>
<tr>
<td>~600 students per year in intro</td>
<td>~100 students per year in intro</td>
</tr>
<tr>
<td>~150 CS majors per year</td>
<td>~30 CS majors per year</td>
</tr>
<tr>
<td>CMU</td>
<td>Wesleyan</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>• Imperative has a “basic programming”</td>
<td>• Many students have never programmed before</td>
</tr>
<tr>
<td>prerek</td>
<td></td>
</tr>
<tr>
<td>• Imperative has a math co-req</td>
<td>• No math pre/co-reqs, though many students</td>
</tr>
<tr>
<td>• Functional has a math prerek</td>
<td>have it</td>
</tr>
</tbody>
</table>
Hypothesis

CMU courses can work elsewhere, with some adaptation to context

Wesleyan this spring: 2/3rds of CMU Imperative

• less programming background
• shorter semester
• fewer student hours per week
Course Design

- Imperative Computation
- Functional Computation
- Data Structures and Algorithms
Course Design

- Imperative Computation
- Functional Computation
- Data Structures and Algorithms

parallelism
Course Design

Imperative Computation

Functional Computation

Data Structures and Algorithms

parallelism

verification
Trade-offs

• Breadth vs depth
• Outward vs inward
• Motivation vs skills
• Short- vs long-term
• Systems vs theory
• Jump in vs training wheels
Trade-offs

- Breadth vs. depth
- Outward vs. inward
- Motivation vs. skills
- Short- vs. long-term
- Systems vs. theory
- Jump in vs. training wheels
Objectives

- computational thinking
- imperative and functional programming
- algorithm design and analysis
- specification and verification
Computational Thinking

what vs how

self-reference

correctness and safety

modularity

efficiency

functions as data

parallelism

ephemerality vs persistence

randomness
Objectives

- computational thinking
- imperative and functional programming
- algorithm design and analysis
- specification and verification
Imperative

C0: teaching language based on C, designed by Frank Pfenning and Rob Arnold

functions, variables, loops, arrays, pointers&structs

rudimentary interfaces

type safe, bounds checked, garbage collected
Imperative

Then transition to C

memory management
void* and casting
function pointers
Imperative
Arrays
Top 10 most frequent words in texts/twitter_200k.txt

i 83670
 to 37445
the 36925
lol 35615
a 30300
u 28033
my 25093
you 24574
me 21326
it 21144
Pointers and structs

E0, the minimalist editor -- ^X to exit, ^L to refresh

hi there
how are you?
2.7 Summary of data structures

There are a lot of different data structures being used in this homework! Here is a summary to help you keep them straight:

- Building a Huffman tree converts a dictionary (represented as a pair of arrays) to a Huffman tree, using a priority queue (whose elements are Huffman trees).
- To encode, we convert a Huffman tree to a hashtable (mapping characters to bitstrings) using a stack (of pairs of Huffman trees and bitstrings).
- To decode, we just use the Huffman tree.
- The hashtable elements are a struct `char_with_string` that pairs a character with a bitstring.
- The priority queue elements are Huffman tree trees.
- The stack elements are a struct `hufftree_with_path` that pairs a Huffman tree with a bitstring.
- Decode returns a `decode_result`, which is either NULL or a pair of a character and a bitstring.
Functional

Standard ML

numbers, pairs, lists, trees, datatypes

functions as arguments and results

signatures, structures, functors

exceptions, mutation, IO
Functional

Why not

• Ocaml: no parallel implementation (Manticore for SML)
• Haskell: laziness complicates cost analysis
• F#: want the ML module system
Functional

Barnes-Hut visualizer

Step 1:
Select transcript file or drag transcript file into box.

Choose File: solar-year.txt

Step 2:
Run visualizer!

End Simulation.

Go!
Maxie, please type your move: 0
Maxie decides to make the move 0 in 14 seconds.

```
 0 1 2 3 4 5 6
----------------
/ / / / / / / / /
/ / / / / / / / /
/ / / / / / / / /
/ / / / / / / / /
/ X / / / / / / /
/ X / / / / / / /
/ X / / / / O / O /
/ X / O / O / O / O
```

Minnie decides to make the move 0 in 0 seconds.

```
 0 1 2 3 4 5 6
----------------
/ / / / / / / / /
/ / / / / / / / /
/ / / / / / / / /
/ / / / / / / / /
/ / O / / / / / /
/ / O / / / / / /
/ / O / / O / O / /
/ / O / O / O / O / O
```
Objectives

computational thinking

imperative and functional programming

algorithm design and analysis

specification and verification
Imperative

ephemeral data structures unbounded arrays
arrays priority queues
searching hash tables
in-place sorting DFS/BFS
linked lists balanced BSTs
stacks tries
queues spanning trees
union find
Imperative

ephemeral data structures unbounded arrays
arrays priority queues
searching hash tables
in-place sorting DFS/BFS
linked lists
stacks
queues
Analysis

big-O

worst case

amortized

expected case
Functional

persistent data structures
lists
trees
sorting
regular expression matching
n-body simulation
balanced BSTs
game tree search
Analysis

recurrence relations

closed forms

log
Data structures and algorithms

divide and conquer
sequences
sets and tables
randomization
dynamic programming

BFS/DFS
shortest paths
treaps
leftist heaps
k-grams
Functional

- lists
- trees
- sorting
- n-body simulation
- game tree search

DS&A

divide and conquer
- sequences
- sets and tables
- randomization
- BFS/DFS
- shortest paths
- treaps
- dynamic programming
- leftist heaps
Functional

- lists
- trees
- sorting
- n-body simulation
- game tree search

DS&A

- divide and conquer
- sequences
- sets and tables
- randomization
- BFS/DFS
- shortest paths
- treaps
- dynamic programming
- leftist heaps

always have parallelism in mind!
Imperative

mutable data structures
arrays
searching
in-place sorting
linked lists
stacks
queues
unbounded arrays
priority queues
hash tables
DFS/BFS
tries
spanning trees
union find

Functional/DS&A

lists
trees
sorting
n-body simulation
game tree search
divide and conquer
sequences
sets and tables
randomization
BFS/DFS
shortest paths
treaps
dynamic programming
leftist heaps
Imperative

- mutable data structures
 - arrays
 - searching
 - in-place sorting
 - linked lists
 - stacks
 - queues
- unbounded arrays
- priority queues
- hash tables
- DFS/BFS
- tries
- spanning trees
- union find

Functional/DS&A

- lists
- trees
- sorting
- n-body simulation
- game tree search
- divide and conquer
- sequences
- sets and tables
- randomization
- BFS/DFS
- shortest paths
- treaps
- dynamic programming
- leftist heaps

always have verification in mind!
Objectives

- computational thinking
- imperative and functional programming
- parallel algorithm design and analysis
- specification and verification
Specification and Verification
Specification and Verification

Imperative: pre/post-conditions and loop invariants, expressed using boolean-valued functions

Functional: mathematical statements about calculational behavior of programs
Slogans

proof-oriented programming

deliberate programming

proof-directed debugging
Imperative
Specifications

safety

behavioral

data structure invariants
Safety

// try to prove that all array accesses are in bounds

void process_heartbeat(struct ssl* request)
{
 int payload = request->data[0];

 int[] buffer = alloc_array(int, 1 + payload);
 buffer[0] = payload;

 for (int i = 0; i < payload; i = i + 1)
 buffer[i+1] = request->data[i+1];

 send(buffer,1+payload);
}

Behavior

```java
void sort(int[] A, int lower, int upper)
//@ requires 0 <= lower && lower <= upper && upper <= \length(A);
//@ ensures is_sorted(A,lower,upper);
{
    for (int i = lower; i < upper; i = i + 1)
        //@ loop_invariant lower <= i && i <= upper;
        //@ loop_invariant is_sorted(A,lower,i);
        //@ loop_invariant le_segs(A,lower,i,i,i,upper);
        {
            int smallest_index = get_min(A,i,upper);
            swap(A,i,smallest_index);
        }
}
```
Behavior

```cpp
//return true iff A[lower,upper) is sorted
bool is_sorted(int[] A, int lower, int upper)
//@requires 0 <= lower && lower <= upper && upper <= \length(A);
{
    for (int i = lower; i + 1 < upper; i = i + 1)
        //@loop_invariant 0 <= i;
        {
            if (A[i] > A[i+1]) { return false; }
        }
return true;
}
```
Proofs

Loop invariants hold initially

Loop invariants preserved by one iteration

Loop invariants imply the postcondition
void sort(int[] A, int lower, int upper)
//@ requires 0 <= lower && lower <= upper && upper <= \length(A);
//@ ensures is_sorted(A,lower,upper);
{
 for (int i = lower; i < upper; i = i + 1)
 //@loop_invariant lower <= i && i <= upper;
 //@loop_invariant is_sorted(A,lower,i);
 //@loop_invariant le_segs(A,lower,i,i,i,upper);
 {
 int smallest_index = get_min(A,i,upper);
 swap(A,i,smallest_index);
 }
}
Preservation of LI

A[lower,i) sorted
A[lower,i) <= A[i,upper)
A[s] <= A[i+1,upper)

A[lower,i+1) sorted
A[lower,i+1) <= A[i+1,upper)
int search(int x, int A[], int n)
//@requires 0 <= n && n <= \length(A);
//@requires is_sorted(A, 0, n);
/*@ensures \result == -1 && !is_in(x, A, 0, n))
 || (0 <= \result && \result < n && A[\result] == x); @*/
{
 int lower = 0;
 int upper = n;

 // look in A[lower,upper)

 while (lower < upper)
 //@ loop_invariant 0 <= lower && lower <= upper && upper <= n;
 //@ loop_invariant lower == 0 || (x > A[lower - 1]);
 //@ loop_invariant upper == n || x < A[upper];
 {
 int mid = lower + (upper - lower) / 2;
 //@ assert lower <= mid && mid < upper;
 if (A[mid] == x) { return mid; }
 else if (A[mid] > x) {
 upper = mid;
 }
 else {
 //@ assert A[mid] < x;
 lower = mid+1;
 }
 }

 //@ assert lower == upper;
 return -1;
}
Binary Search

```
int search(int x, int[] A, int n)
//@requires 0 <= n && n <= length(A);
//@requires is_sorted(A, 0, n);
/*@ensures (result == -1 && !is_in(x, A, 0, n))
   || (0 <= result && result < n && A[result] == x); @*/
{
    int lower = 0;
    int upper = n;

    // look in A[lower,upper)

    while (lower < upper)
    //@ loop_variant 0 <= lower && lower <= upper && upper <= n;
    //@ loop_invariant lower == 0 || (x > A[lower - 1]);
    //@ loop_invariant upper == n || x < A[upper];
    {
        int mid = lower + (upper - lower) / 2;
        //@ assert lower <= mid && mid < upper;
        if (A[mid] == x) { return mid; }
        else if (A[mid] > x) {
            upper = mid;
        }
        else {
            //@ assert A[mid] < x;
            lower = mid+1;
        }
    }

    // @ assert lower == upper;
    return -1;
}
```
struct heap_header {
 int limit; /* limit = capacity+1 */
 int next; /* 1 <= next && next <= limit */
 elem[] data; /* \length(data) == limit */
};
typedef struct heap_header* heap;

/* Just checks the basic invariants described above, none */
/* of the ordering invariants. */
bool is_safe_heap(struct heap_header* H) {
 if (H == NULL) return false;
 if (!(1 <= H->next && H->next <= H->limit)) return false;
 // @assert \length(H->data) == H->limit;
 return true;
}
bool is_heap(struct heap_header* H)
{
 if (!is_safe_heap(H)) return false;

 for (int i = 2; i < H->next; i = i + 1)
 // @loopInvariant 2 <= i;
 {
 if (!(priority(H,i) >= priority(H,parent(i)))) return false;
 }

 return true;
}
/** Client interface ***/

// typedef _____________ pq_elem;

int pq_elem_priority(pq_elem e);

/** Library interface ***/

// typedef _____________ pq;
typedef struct heap_header* pq;

bool pq_empty(pq P);

pq pq_new(int capacity)
/*@ensures pq_empty(result); @*/;

void pq_insert(pq P, pq_elem e)

pq_elem pq_delmin(pq P)
/*@requires !pq_empty(P); @*/;
void pq_insert(heap H, elem e)
//@requires is_heap(H);
//@ensures is_heap(H);
{
 H->data[H->next] = e;
 int except = H->next;
 H->next = H->next + 1;

 // not necessarily is_heap(H)
 //@assert is_heap_except_up(H,except);

 // sift up

 while (except != 1 &&
 priority(H,except) < priority(H,parent(except)))
 //@ loop_invariant is_heap_except_up(H,except);
 {
 swap(H->data,except,parent(except));
 except = parent(except);
 }

 //@assert is_heap(H);
}

bool is_heap_except_up(heap H, int except) {
 // ensures is_heap_except_up(H,1) == is_heap(H)
 if (!is_safe_heap(H)) {return false;}

 for (int n = 2; n < H->next; n = n + 1) {
 //@ loop_invariant (2 <= n);
 {
 if (n != except) {
 if (!((priority(H,n) >= priority(H,parent(n)))))
 return false;
 }
 }

 if ((n == left(except) || n == right(except))
 && exists(parent(except),H->next)) {
 if (!((priority(H,n) >= priority(H,parent(except)))))
 return false;
 }
 }

 return true;
}
(f) Draw a picture of what happens when the swap on line /*2*/ is performed. Explain why the loop invariant is preserved in this case.

Solution:
Task 1 (6 pts) A valid text buffer satisfies all the invariants described above: it is a valid doubly-linked list containing valid size-16 gap buffers, it is aligned, and it consists of either one empty gap buffer or one or more non-empty gap buffers. Implement the function

```c
bool is_tbuf(tbuf B)
```

that formalizes the text buffer data structure invariants.
void buflen_delete(tbuf B)
//@requires is_tbuf(B);
//@ensures is_tbuf(B);
Functional
Specifications

Beyond requires/ensures

Specs relating multiple functions

Propositions, not booleans
Computing by calculation

\[(1 + 2) \times (3 + 4)\]
|\rightarrow 3 \times (3 + 4)\] (because \(1 + 2 \rightarrow 3\))
|\rightarrow 3 \times 7\] (because \(3 + 4 \rightarrow 7\))
|\rightarrow 21\]
Contextual equivalence

\[(\text{fn } x \Rightarrow e) \; e' \equiv [e'/x]e \; \text{ if } e' \text{ valuable}\]

\[e_1 \; e_2 \equiv e_1 \; e_2' \; \text{ if } e_2 \equiv e_2' \]
\[e_1 \; e_2 \equiv e_1' \; e_2 \; \text{ if } e_1 \equiv e_1' \]

\[f \equiv g : T_2 \rightarrow T \; \text{ if for all values } v : T_2, f \; v \equiv g \; v : T\]
Task 2.1 (5%). Write the function

\[\text{zip} : \text{int list} * \text{string list} \rightarrow (\text{int} * \text{string}) \text{ list} \]

Task 2.2 (5%). Write the function

\[\text{unzip} : (\text{int} * \text{string}) \text{ list} \rightarrow \text{int list} * \text{string list} \]

Task 2.3 (10%). Prove Theorem 1.

Theorem 1. For all \(l : (\text{int} * \text{string}) \text{ list} \), \(\text{zip}(\text{unzip} \ l) \equiv l \).

Task 2.4 (4%). Prove or disprove Theorem 2.

Theorem 2. For all \(l1 : \text{int list} \) and \(l2 : \text{string list} \),

\[\text{unzip}(\text{zip} \ (l1,l2)) \equiv (l1,l2) \]
Props, not bools

\[
\begin{align*}
s \in L(0) & \iff \bot \\
s \in L(1) & \iff s = [] \\
s \in L(c) & \iff s = [c] \\
s \in L(r_1 + r_2) & \iff s \in L(r_1) \lor s \in L(r_2) \\
s \in L(r_1r_2) & \iff \exists s_1, s_2. (s = s_1s_2) \land s_1 \in L(r_1) \land s_2 \in L(r_2)
\end{align*}
\]
Props, not bools

\[
\begin{align*}
 s \in L(0) & \iff \bot \\
 s \in L(1) & \iff s = [] \\
 s \in L(c) & \iff s = [c] \\
 s \in L(r_1 + r_2) & \iff s \in L(r_1) \lor s \in L(r_2) \\
 s \in L(r_1 \cdot r_2) & \iff \exists s_1, s_2. (s = s_1 s_2) \land s_1 \in L(r_1) \land s_2 \in L(r_2)
\end{align*}
\]
Props, not bools

\[
\begin{align*}
 s \in L(0) & \quad \text{iiff} \quad \bot \\
 s \in L(1) & \quad \text{iiff} \quad s = [] \\
 s \in L(c) & \quad \text{iiff} \quad s = [c] \\
 s \in L(r_1 + r_2) & \quad \text{iiff} \quad s \in L(r_1) \lor s \in L(r_2) \\
 s \in L(r_1 r_2) & \quad \text{iiff} \quad \exists s_1, s_2. (s = s_1 s_2) \land s_1 \in L(r_1) \land s_2 \in L(r_2)
\end{align*}
\]

want to reason logically about existential, not about try-all-splits implementation
Props, not bools

\[s \in L(r^*) \quad \text{iff} \quad s \in L^*(r) \]

\[
\begin{align*}
\varepsilon & \in L^*(r) \\
\frac{s = s_1 s_2}{s \in L^*(r)} & \quad \frac{s_1 \in L(r)}{s_2 \in L^*(r)}
\end{align*}
\]

inner inductive definition of \(L^* \)
Props, not bools

\[
\text{match : regexp} \rightarrow \text{char list} \rightarrow (\text{char list} \rightarrow \text{bool}) \rightarrow \text{bool}
\]

Soundness For all \(cs, k\), if \(\text{match } r \ cs \ k \equiv \text{true}\)
then there exist \(p, s\) such that \(p \circ s \equiv cs\) and \(p \in L(r)\) and \(k \ s \equiv \text{true}\).

Completeness For all \(cs, k\),
if (there exist \(p, s\) such that \(p \circ s \equiv cs\) and \(p \in L(r)\) and \(k \ s \equiv \text{true}\))
then \(\text{match } r \ cs \ k \equiv \text{true}\).
```
fun match (r : regexp) (cs : char list) (k : char list -> bool) : bool =
  case r of
  | Zero => false
  | One => k cs
  | Char c => (case cs of
                | [ ] => false
                | (c : cs') => char eq (c, c') andalso k cs')
  | Star r => let fun matchstar cs' = k cs' orelse match r cs' matchstar
              in
                match r1 cs k
              end
  | Times (r1, r2) => match r1 cs k orelse match r2 cs k
  | Plus (r1, r2) => match r1 cs k orelse match r2 cs k
```

Regexp
fun match (r : regexp) (cs : char list) (k : char list -> bool) : bool =
case r of
 Zero => false
| One => k cs
| Char c => (case cs of
 [] => false
 | c' :: cs' => chareq (c,c') andalso k cs')
| Plus (r1,r2) => match r1 cs k orelse match r2 cs k
| Times (r1,r2) => match r1 cs (fn cs' => match r2 cs' k)
| Star r =>
 let fun matchstar cs' = k cs' orelse match r cs' matchstar
 in
 matchstar cs
 end
fun match (r : regexp) (cs : char list) (k : char list -> bool) : bool =
case r of
 Zero => false
| One => k cs
| Char c => (case cs of
 [] => false
 | c' :: cs' => char eq (c,c') and also k cs')
| Plus (r1,r2) => match r1 cs k orelse match r2 cs k
| Times (r1,r2) => match r1 cs (fn cs' => match r2 cs' k)
| Star r =>
 let fun matchstar cs' = k cs' orelse match r cs' matchstar
 in
 matchstar cs
end

termination bug
Proof-directed debugging

\[s \in L(r_1 \cap r_2) \iff s \in L(r_1) \land s \in L(r_2) \]
Modularity

signature ORDERED =
sig
 type t
 val compare : t * t -> order
end

signature DICT =
sig
 structure Key : ORDERED
 type 'v dict

 val empty : 'v dict
 val insert : 'v dict -> (Key.t * 'v) -> 'v dict
 val lookup : 'v dict -> Key.t -> 'v option
end
A RBT satisfies
(red) no red node has a red child
(black) all paths from the root to a leaf have the same number of black nodes

(* If d is a RBT then insert d (k,v) is a RBT *)
\textbf{fun} insert d (k, v) = ...
Representation invs

signature QUEUE=
sig
 type queue
 val emp : queue
 val ins : int * queue -> queue
 val rem : queue -> (int * queue) option
end
\(\mathcal{R}(l:\text{int list}, (f,b):\text{int list} \times \text{int list}) \text{ iff } l \cong f@(\text{rev } b) \)

and \(\mathcal{R} \) respects equivalence in that if \(l \cong l' \), \((f,b) \cong (f',b') \), and \(\mathcal{R}(l,(f,b)) \) then \(\mathcal{R}(l',(f',b')) \).

Showing that this relation is respected by both implementations for all the values in \text{QUEUE} amounts to proving the following theorem:

\textbf{Theorem 1.}

(i.) The empty queues are related:

\[\mathcal{R}(\text{LQ.emp}, \text{LLQ.emp}) \]

(ii.) Insertion preserves relatedness:

For all \(x:\text{int} \), \(l:\text{int list} \), \(f:\text{int list} \), \(b:\text{int list} \)

\[\text{If } \mathcal{R}(l,(f,b)) \text{, then } \mathcal{R}(\text{LQ.ins}(x,l), \text{LLQ.ins}(x,(f,b))) \]

(iii.) On related queues, removal gives equal integers and related queues:

For all \(l:\text{int list} \), \(f:\text{int list} \), \(b:\text{int list} \), if \(\mathcal{R}(l,(f,b)) \) then one of the following is true:

(a) \(\text{LQ.rem } l \cong \text{NONE} \) and \(\text{LLQ.rem } (f,b) \cong \text{NONE} \)

(b) There exist \(x:\text{int} \), \(y:\text{int} \), \(l':\text{int list} \), \(f':\text{int list} \), \(b':\text{int list} \), such that
i. \(\text{LQ.rem } l \cong \text{SOME}(x,l') \)
ii. \(\text{LLQ.rem } (f,b) \cong \text{SOME}(y,(f',b')) \)
iii. \(x \cong y \)
iv. \(\mathcal{R}(l',(f',b')) \)
Verification

safety

behavioral specifications

representation invariants + modularity

booleans and propositions

contracts
Slogans

proof-oriented programming

deliberate programming

proof-directed debugging
Parallelism
Parallelism

recognize the dependencies
deterministic parallelism
language-based cost model
asymptotic analysis
Parallelism != Concurrency

parallelism: multiple processors/cores. property of the machine.

concurrency: interleaving of threads. property of the application.
Parallelism ≠ Concurrency

<table>
<thead>
<tr>
<th></th>
<th>sequential</th>
<th>concurrent</th>
</tr>
</thead>
<tbody>
<tr>
<td>serial</td>
<td>traditional algorithms</td>
<td>traditional OS</td>
</tr>
<tr>
<td>parallel</td>
<td>deterministic parallelism</td>
<td>general parallelism</td>
</tr>
</tbody>
</table>
Parallel Calculation

\[(1 + 2) \times (3 + 4) \]
\[\rightarrow 3 \times (3 + 4) \quad \text{(because } 1 + 2 \rightarrow 3) \]
\[\rightarrow 3 \times 7 \quad \text{(because } 3 + 4 \rightarrow 7) \]
\[\rightarrow 21 \]
Parallel Calculation

\[(1 + 2) \times (3 + 4)\]
\[\rightarrow 3 \times (3 + 4) \quad \text{(because} \ 1 + 2 \rightarrow 3)\]
\[\rightarrow 3 \times 7 \quad \text{(because} \ 3 + 4 \rightarrow 7)\]
\[\rightarrow 21\]

verification is the same as without parallelism
Work and span

Work is usual serial time complexity

\[
\text{work} \langle e_1, e_2 \rangle = \text{work}(e_1) + \text{work}(e_2)
\]

Span is parallel time complexity

\[
\text{span} \langle e_1, e_2 \rangle = \max(\text{span}(e_1), \text{span}(e_2))
\]
fun split (l : int list) : int list * int list =
case l of
 | [] => ([] , [])
 | [x] => ([x] , [])
 | x :: y :: xs => let val (pile1 , pile2) =
 split xs
 in (x :: pile1 , y :: pile2)
 end

fun merge (l1 : int list , l2 : int list) : int list =
case (l1 , l2) of
 | ([] , l2) => l2
 | (l1 , []) => l1
 | (x :: xs , y :: ys) =>
 (case x < y of
 true => x :: (merge (xs , l2))
 | false => y :: (merge (l1 , ys)))

fun mergesort (l : int list) : int list =
case l of
 | [] => []
 | [x] => [x]
 | _ => let val (pile1,pile2) = split l
 in
 merge (mergesort pile1, mergesort pile2)
 end
Work

[7, 1, 3, 6, 8, 4, 2, 5]
Work

[7, 1, 3, 6, 8, 4, 2, 5]

[7, 1, 3, 6] [8, 4, 2, 5]
Work

[7, 1, 3, 6, 8, 4, 2, 5]

[7, 1, 3, 6] [8, 4, 2, 5]

[7, 1] [3, 6] [8, 4] [2, 5]
<table>
<thead>
<tr>
<th>Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>[7, 1, 3, 6, 8, 4, 2, 5]</td>
</tr>
<tr>
<td>[7, 1, 3, 6]</td>
</tr>
<tr>
<td>[7, 1]</td>
</tr>
</tbody>
</table>
Work

\[W(n) = n + 2 \ W(n/2) \quad \text{is } O(n \ \log \ n) \]
Span

$[7,1,3,6,8,4,2,5]$

$[7,1,3,6]$

$[7,1]$

$[7]$

$[8,4,2,5]$

$[8,4]$

$[8]$

$[2,5]$

$[2]$

$[5]$
Span

\[S(n) = n + S(n/2) \]

is $O(n)$
Mergesort

on lists: O(n log n) work
 O(n) span

on trees: O(n log n) work
 O((log n)^3) span
fun splitAt (t : tree, bound : int) : tree * tree =
 case t of
 Empty => (Empty, Empty)
 | Node (l, x, r) =>
 (case bound < x of
 true => let val (ll, lr) = splitAt (l, bound)
 in (ll, Node (lr, x, r))
 false => let val (rl, rr) = splitAt (r, bound)
 in (Node (l, x, rl), rr)
 end)

fun merge (t1 : tree, t2 : tree) : tree =
 case t1 of
 Empty => t2
 | Node (l1, x, r1) =>
 let val (l2, r2) = splitAt (t2, x)
 in
 Node (merge (l1, l2),
 x,
 merge (r1, r2))
 end

fun mergesort (t : tree) : tree =
 case t of
 Empty => Empty
 | Node (l, x, r) =>
 merge(merge (mergesort l, mergesort r),
 Node(Empty, x, Empty))
Design principles

keep work low (ideally work-efficient)

then minimize span
Brent’s principle: time to run on \(p \) processors is \(O(\max(\text{work}/p,\text{span})) \)
Sequences

(* map f <x1, ..., xn> == <f x1, ..., f xn>
 work O(n)
 span O(1)
*)

val map : ('a -> 'b) -> 'a seq -> 'b seq

(* reduce op b <x1, ..., xn> == x1 op x2 ... op xn
 work O(n)
 span (log n)
*)

val reduce : ((('a * 'a) -> 'a) -> 'a -> 'a seq -> 'a

n-body simulation

fun accelerations (bodies : body Seq.seq) : vec Seq.seq =
Seq.map
(fn b1 =>
 sum bodies (fn b2 => acc0n (b1, b2)))
bodies

quadratic work
logarithmic span
Barnes-Hut

divide space recursively into quadrants, approximating contribution of bodies that are too far away by their center of mass

$O(n \log(n))$ work

logarithmic span
Game tree search

Minimax: at each node, work is $O(\text{children})$; span is $O(\log \text{children})$

Alpha-beta pruning: work is better but span is linear

Jamboree: trade work for span
Data structures and algorithms

divide and conquer
sequences
sets and tables
randomization
dynamic programming

BFS/DFS
shortest paths
graph contractability
treaps
leftist heaps
Implementation

Nested parallelism can be realized in

- Nesl
- Manticore (SML)
- Parallel Haskell
- Cilk
- TPL (C#/F#)
- OpenMP
Parallelism

recognize the dependencies
deterministic parallelism
language-based cost model
asymptotic analysis
Objectives

- computational thinking
- imperative and functional programming
- parallel algorithm design and analysis
- specification and verification
Trade-offs

• Breadth vs depth
• Outward vs inward
• Motivation vs skills
• Short- vs long-term
• Systems vs theory
• Jump in vs training wheels
CMU Intro Courses

Fundamentals of Computing

- Imperative Computation
- Functional Computation

Computer Systems
Data Structures and Algorithms
Software Construction
Activities

lecture

lab/recitation

homework

lots of TA homework help time

lots of TA grading time
Experiment

CMU courses can work elsewhere, with some adaptation to context

Wesleyan this spring: 2/3 of CMU Imperative

Wesleyan next year: 3/4 of CMU Functional?