Dependently Typed Programming
with Domain-Specific Logics

Daniel R. Licata

Thesis Committee:
Robert Harper, Chair
Karl Crary
Frank Pfenning
Greg Morrisett, Harvard University

Supported by NSF CCF-0702381/CNS-0716469 and the Pradeep Sindhu Fellowship
“IT IS EASIER TO WRITE AN INCORRECT PROGRAM THAN UNDERSTAND A CORRECT ONE.”

- One man’s constant is another man’s variable.
- If a listener nods his head when you’re explaining your program, wake him up.
- Don’t have good ideas if you aren’t willing to be responsible for them.
- In software systems it is often the early bird that makes the worm.
- Every program has (at least) two purposes: the one for which it was written and another for which it wasn’t.
- It is easier to write an incorrect program than understand a correct one.
- If you have a procedure with 10 parameters, you probably missed some.
- In a 5 year period we get one superb programming language - only we can’t control when the 5 year period will begin.
It is easier to write an incorrect program than understand a correct one.
Goal:

Make it harder to write incorrect programs and easier to understand correct ones.
Method:

Make
type system & specification logic design part of the programming process
Method:

Make type system & specification logic design part of the programming process.
Method:

Make type system & specification logic design part of the programming process using dependent types
Examples

- Ynot: verifying imperative programs with separation logic [Morrisett et al.]
- PCML5, Aura, Fine: verifying security properties with authorization logic [Chapter 3; Morgenstern & Licata, ICFP’10]
- Reed&Pierce’s type system for Differential Privacy [Chapter 4]
Examples

- Ynot: verifying imperative programs with separation logic [Morrisett et al.]
- PCML5, Aura, Fine: verifying security properties with authorization logic [Chapter 3; Morgenstern & Licata, ICFP’10]
- Reed&Pierce’s type system for Differential Privacy [Chapter 4]
ACM says ∀ s:principal,
 ∀ i:principal,
 ∀ p:paper,
 (member(i) ∧ i says student(s))
 ⊃ MayRead(s, p)
...

CMU says student(Alice)
...

CMU says student(Alice)
...

Digital library
• All students of members can read papers
• CMU is a member

CMU
• Alice is a student
• Charlie is a student
• ...

(slide by Kumar Avijit)
Dependent Types! [Agda]

read : prin → file
 → contents
Dependent Types! [Agda]

read : prin → file → proof → contents
Dependent Types! [Agda]

read : prin \rightarrow file \rightarrow proof
\rightarrow contents

read : (k : prin) (f : file) (p : proof\text{(mayread(k,f)})
\rightarrow contents
Dependent Types! [Agda]

read : prin → file → proof → contents

read : (k : prin) (f : file) (p : proof (mayread(k,f))) → contents

* typing system ensures p is a well-formed proof
* and that proofs of appropriate theorems are used
Embed in Agda

- Indexed inductive definition to represent proofs
- Theorem prover to discharge proof obligations, run at compile-time and run-time
- Indexed monad to manage stateful+dynamic policies
Representing Logic

Sequent as indexed inductive definition:

\[\Gamma \vdash A \quad \text{data } _ \vdash _ : \text{Ctx} \to \text{Propo} \to \text{Type} \]
Representing Logic

Sequent as indexed inductive definition:

$$\Gamma \vdash A \quad \text{data } _\vdash _ : \text{Ctx} \to \text{Propo} \to \text{Type}$$

Classifying *only* well-formed derivations:

$$\mathcal{D} \quad \Gamma \vdash A \quad \mathcal{D} : \Gamma \vdash A$$
Representing Logic

Sequent as indexed inductive definition:

\[\Gamma \vdash A \quad \text{data } _\vdash _ : \text{Ctx} \rightarrow \text{Propo} \rightarrow \text{Type} \]

Classifying *only* well-formed derivations:

\[\mathcal{D} \]

\[\Gamma \vdash A \quad \mathcal{D} : \Gamma \vdash A \]

Inference rules as datatype constructors:

\[\frac{\Gamma, A \vdash B}{\Gamma \vdash A \supset B} \]

\[\mathcal{R} : \forall \{\Gamma A B\}
\quad \rightarrow (A :: \Gamma) \vdash B
\quad \rightarrow \Gamma \vdash (A \supset B) \]
Representing Logic

Sequent as indexed inductive definition:

\[\Gamma \vdash A \quad \text{data } _\vdash _ : \text{Ctx} \to \text{Propo} \to \text{Type} \]

Classifying only well-formed derivations:

\[\mathcal{D} : \Gamma \vdash A \]

Inference rules as datatype constructors:

\[\frac{\Gamma, A \vdash B}{\Gamma \vdash A \supset B} \quad \text{\(\supset R \):} \forall \{\Gamma A B\} \rightarrow (A :: \Gamma) \vdash B \rightarrow \Gamma \vdash (A \supset B) \]

dependent de Bruijn indices
Theorem Prover

Implemented a certified theorem prover:

\[\text{prove} : (\Gamma : \text{Ctx}) (A : \text{Propo}) \rightarrow \text{Maybe} (\Gamma \vdash A) \]
Theorem Prover

Implemented a *certified* theorem prover:

\[
\text{prove} : (\Gamma : \text{Ctx}) (A : \text{Propo}) \rightarrow \text{Maybe} (\Gamma \vdash A)
\]

Important that Propos are *inductive*!

data Propo where

says : Principal \rightarrow Propo \rightarrow Propo

...
Examples

- Ynot: verifying imperative programs with separation logic [Morrisett et al.]
- PCML5, Aura, Fine: Security-Typed Programming [Chapter 3; Morgenstern & Licata, ICFP’10]
- Reed&Pierce’s type system for Differential Privacy [Chapter 4]
Differential Privacy

• Ask questions about a database

• Any answer almost exactly as likely if any one person is omitted from the database
Reed&Pierce

- Type system based on affine logic tracks the sensitivity of a function

- Ensure differential privacy by adding noise proportional to sensitivity
Reed&Pierce

- Type system based on affine logic tracks the sensitivity of a function

\[x_1 : A_1[s_1], \ x_2 : A_2[s_2], \ldots \ x_n : A_n[s_n] \vdash C \]

- Ensure differential privacy by adding noise proportional to sensitivity
Reed&Pierce

- Type system based on affine logic that tracks the sensitivity of a function.

\[x_1 : A_1[s_1], x_2 : A_2[s_2], \ldots x_n : A_n[s_n] \vdash C \]

- Ensure differential privacy by adding noise proportional to sensitivity.

\[
\text{can use a variable if } s \geq 1.0
\]
Semantics

Each type A denotes a metric space:

- Set of values $|A|$, equipped with notion of distance

- $A \vdash B$ means

 $f : |A| \to |B|$ such that

 if $\text{dist}_A(x,y) \leq r$ then $\text{dist}_B(f\ x, f\ y) \leq r$
Primitives

Affine logic rules are sound
but lots of primitives are justified semantically:

- `cmpswp : real -o real -o real ⊗ real`
- `rsplit : real -o real ⊗ real`
Primitives

Affine logic rules are sound but lots of primitives are justified semantically:

- `cmpswp : real -o real -o real ⊗ real`
- `rsplit : real -o real ⊖ real`

need to be baked into the language
Extensible Diff. Priv.
[Chap 4]

- Implement the semantics using dependent types
 \[(\forall x, y, r. \text{dist}_A(x, y) \leq r \rightarrow \text{dist}_B(f \ x, f \ y) \leq r)\]

- Primitives implemented and proved sound in the semantics

- Build affine type system on top
Part 1:

It is possible to define, study, automate, and use domain-specific logics within a dependently typed programming language
But how can we make it easier?
Outline

1. New examples of programming with domain-specific logics [Chapters 3 and 4]

2. An investigation into mixing derivability and admissibility [Chapter 5, 6, 7, 8]

3. [REDACTED]
Outline

1. New examples of programming with domain-specific logics [Chapters 3 and 4]

2. An investigation into mixing derivability and admissibility [Chapter 5, 6, 7, 8]

3. [REDACTED]
A Tale of Two Consequence Relations
A Tale of Two
Consequence Relations

\[J_1 \ldots J_n \rightarrow J \]
A Tale of Two
Consequence Relations

\[J_1 \ldots J_n \rightarrow J \]

entailment

assumptions

conclusion
Derivability (∴)

Polynomials over the reals:

\[f(x) = x^2 + 2x + 1 \]

Substitution: plug in for the variable

- \[f(3) = 3^2 + 2 \times 3 + 1 \]
- \[f(y+5) = (y+5)^2 + 2(y+5) + 1 \]
Derivability (\vdash)

Polynomials over the reals:

$$f(x) = x^2 + 2x + 1$$

Substitution: plug in for the variable

- $f(3) = 3^2 + 2 \times 3 + 1$
- $f(y+5) = (y+5)^2 + 2(y+5) + 1$
Derivability (⊢)

If (A implies B) and A then B

(A implies B)

(+)

(A)

=

(B)
Derivability (\vdash)

If (A implies B) and A then B

A true \vdash B true

\[
\begin{align*}
&\text{A true} \
&\downarrow \
&A \
&\text{B true} \
&\downarrow \
&B \\
\text{(A implies B)}
\end{align*}
\]

\[
\begin{align*}
&\text{A} \
&\downarrow \
&\text{A} \
&\downarrow \
&\text{B}
\end{align*}
\]
Derivability \vdash

$\forall R : \forall \{\Gamma A B\}$
$\rightarrow (A :: \Gamma) \vdash B$
$\rightarrow \Gamma \vdash (A \supset B)$

$x_1:A_1[s_1], \ldots x_n:A_n[s_n] \vdash C$

Derivability $J_1 \vdash J_2$:
syntactic variables given meaning by subst.
Admissibility (|=)

Function from reals to reals specified by:

- set of ordered pairs
- every number appears exactly once on the LHS

\[
\{ (0, 1), \\
(1, 4), \\
(\sqrt{2}, 3 + 2\sqrt{2}), \\
\ldots \}
\]
Admissibility (\models)

prove : $(\Gamma : \text{Ctx}) (A : \text{Propo}) \rightarrow \text{Maybe} (\Gamma \vdash A)$

$f : |A| \rightarrow |B|$ such that $\text{dist}_A(x, y) \leq r \rightarrow \text{dist}_B(f \ x, f \ y) \leq r$

Admissibility $J_1 \models J_2$:

inductive proofs and functional programs
Structural Properties

\[
\Gamma, u : J, \Gamma' \vdash J \\
\frac{\Gamma, \Gamma' \vdash J_1 \quad \Gamma, u : J_1, \Gamma' \vdash J_2}{\Gamma, \Gamma' \vdash J_2} \quad \text{subst}
\]

\[
\frac{\Gamma, \Gamma' \vdash J'}{\Gamma, u : J, \Gamma' \vdash J'} \quad \text{weakening}
\]

\[
\frac{\Gamma, u_2 : J_2, u_1 : J_1, \Gamma' \vdash J'}{\Gamma, u_1 : J_1, u_2 : J_2, \Gamma' \vdash J'} \quad \text{exchange}
\]

\[
\frac{\Gamma, u_1 : J, u_2 : J, \Gamma' \vdash J'}{\Gamma, u_1 : J, \Gamma' \vdash J'} \quad \text{contraction}
\]
In Existing Frameworks

MLTT: admissibility as functions
have to code up derivability yourself

LF: derivability as functions
admissibility in separate layer (Twelf, Delphin)
In Existing Frameworks

MLTT: admissibility as functions
have to code up derivability yourself

LF: derivability as functions
admissibility in separate layer (Twelf, Delphin)

inherently unequal!
Admissibility premises

Negated premises:

\[l_1 = l_2 \not\models \text{false} \quad \text{lookup}(M, l_1) = v \]
\[\text{lookup}(M[l_2 \mapsto _], l_1) = v \]

\[t : \text{nat} \quad n : \text{nat} \models P(n) \]
\[P(t) \quad \text{true} \]
Admissibility premises

Negated premises:

\[
\begin{align*}
\l_1 = \l_2 \models & \text{false} & \text{lookup}(M, \l_1) = v \\
\text{lookup}(M[\l_2 \mapsto _], \l_1) = v
\end{align*}
\]

\(\omega\)-rule:

\[
\begin{align*}
t : \text{nat} & \quad n : \text{nat} \models P(n) \\
\hline
P(t) & \text{true}
\end{align*}
\]

concise representations of pattern matching [Zeilberger]
Problem

\[l_1 = l_2 \notimp \text{false} \quad \text{lookup}(M, l_1) = v \quad \text{lookup}(M[l_2 \mapsto _], l_1) = v \]

\[J_1 \notimp (J_2 \imp J_3) \]

doesn’t necessarily follow from \((J_2 \imp J_3) \)
Part II

It is possible to implement, within a dependently typed programming language, a simply typed logical framework that allows derivability and admissibility to be mixed in novel and interesting ways.

[Licata and Harper, ICFP’09; Licata, Zeilberger, Harper; LICS’08]
Embedded Logical Framework

- Define a datatype representing framework types, including derivability ($\Psi \vdash A$) and admissibility functions ($A \models B$)
- Define framework programs by interpretation into Agda
- Automatically equip framework types with the structural properties using generic programming
- Do fun examples using mixing (NBE)
Structural Properties

- **Weakening**: $A \vdash (D \vdash A)$ if [...] graph algorithm [...]
- **Substitution**: $(D \Rightarrow A) \supset (D \supset A)$ if ...
- **Exchange**: $(D_1 \Rightarrow D_2 \Rightarrow A) \supset (D_2 \Rightarrow D_1 \Rightarrow A)$ if ..
- **Contraction**: $(D \Rightarrow D \Rightarrow A) \supset (D \Rightarrow A)$ if ...
- **Strengthening**: $(D \Rightarrow A) \supset A$ if ...
Questions

• When do structural properties exist?
• Dependent types?
 • subst. into derivation yields subst. into judgement

\[
\frac{\Gamma \vdash e : \tau \quad \Gamma, x : \tau, \Gamma' \vdash J}{\Gamma, \Gamma'[e/x] \vdash J[e/x]} \text{ subst}
\]

• requires \textit{composition}

\[
A[t/x][s/y] = A[s/y][t[s/y]/x]
\]
Outline

1. New examples of programming with domain-specific logics [Chapters 3 and 4]

2. An investigation into mixing derivability and admissibility [Chapter 5, 6, 7]

3. [REDACTED]
Directed Type Theory
Directed Type Theory

[logo by RJS]
Directed Types

Each type has notion of transformation on elements:

\[M_1 \preceq_A M_2 \]

Every type family \(x:A \vdash B \) type respects trans.:

\[
\Gamma, x:A \vdash B \text{ type} \quad \Gamma \vdash \alpha : M_1 \preceq_A M_2 \quad \Gamma \vdash M : B[M_1/x] \\
\hline
\Gamma \vdash \text{map}_{x:A \cdot B} \alpha M : B[M_2/x]
\]
Directed Types

Each type has notion of transformation on elements:

\[M_1 \preceq_A M_2 \]

judgement, not type

Every type family \(x:A \vdash B \) type respects trans.:
map for Pairs

Action of map given by each type constructor:

$$\text{map}_{x:A.\ B \times C} (\alpha : M_1 \cong_A M_2) (e, e') =$$

$$(\text{map}_{x:A.\ B} \alpha \ e, \text{map}_{x:A.\ C} \alpha \ e')$$
map for Pairs

Action of map given by each type constructor:

\[
\text{map}_{x:A.B \times C} (\alpha : M_1 \equiv_A M_2) (e, e') = (\text{map}_{x:A.B} \alpha e, \text{map}_{x:A.C} \alpha e')
\]
map for Pairs

Action of map given by each type constructor:

$$\text{map}_{x:A.B \times C} (\alpha : M_1 \equiv_A M_2) (e, e') = (\text{map}_{x:A.B} \alpha e, \text{map}_{x:A.C} \alpha e')$$

Goal: $B[M_2] \times C[M_2]$
map for Pairs

Action of map given by each type constructor:

\[\text{map}_{x:A.B \times C}(\alpha : M_1 \cong_A M_2) \,(e, e') = (\text{map}_{x:A.B} \alpha \ e, \text{map}_{x:A.C} \alpha \ e') \]

Goal: \(B[M_2] \times C[M_2] \)
map for Functions

Action of map given by each type constructor:

\[
\operatorname{map}_{x:A.B \to C} (\alpha : M_1 \simeq_A M_2) \ f = \\
\lambda \ x:B[M_2]. \ \operatorname{map}_{x:A.C} \alpha \ (f \ (\operatorname{map}_{x:A.B} \alpha \ x))
\]
map for Functions

Action of map given by each type constructor:

\[B[M_1] \rightarrow C[M_1] \]

\[\text{map}_{x:A.B} \rightarrow C (\alpha : M_1 \simeq_A M_2) f = \]
\[\lambda x:B[M_2]. \text{map}_{x:A.C} \alpha (f (\text{map}_{x:A.B} \alpha x)) \]
map for Functions

Action of map given by each type constructor:

\[B[M_1] \rightarrow C[M_1] \]

\[\text{map}_{x:A.B \rightarrow C} (\alpha : M_1 \simeq_A M_2) f = \]

\[\lambda \ x:B[M_2]. \ \text{map}_{x:A.C} \alpha \ (f \ (\text{map}_{x:A.B} \alpha \ x)) \quad \text{Goal: } B[M_2] \rightarrow C[M_2] \]
map for Functions

Action of map given by each type constructor:

\[\text{map}_{x:A.B \to C} (\alpha : M_1 \cong_A M_2) \ f = \]
\[\lambda \ x:B[M_2]. \ \text{map}_{x:A.C} \alpha \ (f \ (\text{map}_{x:A.B} \alpha \ x)) \]

\[\text{Goal: } B[M_2] \to C[M_2] \]

Contravariant:
\[B[M_2] \to B[M_1] \]
map for Functions

Action of map given by each type constructor:

\[
\text{map}_{x:A.B \to C} (\alpha : M_1 \simeq_A M_2) \ f = \\
\lambda \ x:B[M_2]. \ \text{map}_{x:A.C} \ \alpha \ (f \ (\text{map}_{x:A.B} \ \alpha \ x))
\]

Goal: \(B[M_2] \to C[M_2] \)

Contravariant:
\(B[M_2] \to B[M_1] \)

Covariant:
\(C[M_1] \to C[M_2] \)
Variances

\[
\frac{\Gamma \text{ ctx}}{\Gamma^{\text{op}} \text{ ctx}}
\]

Contravariant

\[
\Gamma^{\text{op}} \vdash A \text{ type} \quad \Gamma \vdash B \text{ type}
\]

\[
\Gamma \vdash A \to B \text{ type}
\]

Covariant
Functorial Syntax
[FPT’99, AR’99, H’99]

Type Formula[$\Psi : \text{Ctx}$] representing formulas of DSL

Type Ctx:

- elements: representations of DSL contexts Ψ
- transformations $\Psi \simeq \Psi'$:
- DSL substitutions $\Psi' \vdash \sigma : \Psi$
Datatype definition in DTT:

\[
\begin{align*}
\text{formula} & : \text{ctx} \rightarrow \text{set} \\
\text{formula } \psi & \equiv \nu \text{ of } (\text{formula } \in \psi) \mid \text{says of principal } \psi \times \text{formula } \psi
\end{align*}
\]

\text{action of formula on transformations = the structural properties!}

\[
\text{map}_{x.\text{Formula}[x]} (\sigma : \psi \cong \psi') : \text{Formula}[\psi] \rightarrow \text{Formula}[\psi']
\]
Generalizations

I show that this extends to

- admissibility premises
- dependent types

\[t : \text{nat} \quad n : \text{nat} \vdash P(n) \]

\[\frac{P(t) \text{ true}}{P(t)} \]
Generalizations

I show that this extends to

- admissibility premises
- dependent types

represented by → or ⊓
Answers

★ When do structural properties exist?
★ Dependent types?
★ subst. into derivation yields subst. into judgement

\[
\Gamma \vdash e : \tau \quad \Gamma, x : \tau, \Gamma' \vdash J \\
\Gamma, \Gamma'[e/x] \vdash J[e/x]
\]

★ requires *composition*

\[
A[t/x][s/y] = A[s/y][t[s/y]/x]
\]
When do structural properties exist? track variances

Dependent types?

- subst. into derivation yields subst. into judgement

\[
\frac{\Gamma \vdash e : \tau \quad \Gamma, x : \tau, \Gamma' \vdash J}{\Gamma, \Gamma'[e/x] \vdash J[e/x]}
\]

requires \textit{composition}

\[
A[t/x][s/y] = A[s/y][t[s/y]/x]
\]
Answers

When do structural properties exist? track variances

Dependent types?

- subst. into derivation yields subst. into judgement

\[
\frac{\Gamma \vdash e : \tau \quad \Gamma, x : \tau, \Gamma' \vdash J}{\Gamma, \Gamma'[e/x] \vdash J[e/x]}
\]

- requires composition

\[
A[t/x][s/y] = A[s/y][t[s/y]/x]
\]
Answers

★ When do structural properties exist?
★ Dependent types?
 ★ subst. into derivation yields subst. into judgement
 \[
 \Gamma \vdash e : \tau \quad \Gamma, x : \tau, \Gamma' \vdash J \\
 \frac{}{\Gamma, \Gamma'[e/x] \vdash J[e/x]}
 \]
 ★ requires composition
 \[
 A[t/x][s/y] = A[s/y][t[s/y]/x]
 \]
Answers

Natural deductions $\Psi \vdash F$ where F can depend on Ψ
represented by
$nd : (\Sigma(\Psi : \text{Ctx}). \text{Formula}[\Psi]) \to \text{type}$
Natural deductions $\Psi \vdash F$ where F can depend on Ψ represented by
\[
\text{nd : (} \Sigma(\Psi : \text{Ctx}). \text{Formula}[\Psi] \text{)} \rightarrow \text{type}
\]

Transformation $(\Psi, F) \cong (\Psi', F')$ is exactly

1. substitution $\Psi' \vdash \sigma : \Psi$
2. such that $F' = \text{map} \sigma F$
Answers

Natural deductions $\Psi \vdash F$ where F can depend on Ψ represented by

$$\text{nd} : (\Sigma(\Psi : \text{Ctx}). \text{Formula}[\Psi]) \rightarrow \text{type}$$

Transformation $(\Psi, F) \preccurlyeq (\Psi', F')$ is exactly

- substitution $\Psi' \vdash \sigma : \Psi$
- such that $F' = \text{map } \sigma F$

so $\text{map}_{\text{nd} \circ \text{nd}} \sigma : \text{nd } \Psi F \rightarrow \text{nd } \Psi' F[\sigma]$
A language with directed types provides a useful framework for describing the structural properties of a dependently typed logical framework.
Higher-Dimensional Symmetric Type Theory

types in intensional type theory

higher-dimensional groupoids in category theory

higher homotopy types in homotopy theory

justifies working up to (higher) isomorphism
Higher-Dimensional Directed Type Theory

Higher-dimensional categories in category theory

Higher homotopy types in directed homotopy theory

types in directed type theory

justifies working up to transformation
Semantics of DTT

- Context Γ denotes a category
- Type $\Gamma \vdash A$ type denotes a functor $\Gamma \to \text{Cat}$
- Term $\Gamma \vdash M : A$ denotes
 a “dependently typed functor” $\Gamma \to A$
- Transformation $M \simeq N$ denotes
 a natural transformation

this is the 2-dimensional case in a hierarchy!
Contributions

- New examples of programming with domain-specific logics [Chapters 3 and 4]
- An investigation into mixing derivability and admissibility [Chapter 5, 6, 7, 8]
- A new notion of Directed Type Theory, corresponding to higher-dimensional category theory and homotopy theory [Chapters 7, 8]
Part I

It is possible to define, study, automate, and use domain-specific logics within a dependently typed programming language
Part II

It is possible to implement, within a dependently typed programming language, a simply typed logical framework that allows derivability and admissibility to be mixed in novel and interesting ways.
Part III

A language with directed types provides a useful framework for describing the structural properties of a dependently typed logical framework
Future Work

- **DTT, theory:** inductive types, directed hom-types, opposite types, covariant Π

- **DTT, practice:** implementation, decidable definitional equality

- More examples of domain-specific logics, and bigger programs verified using them
Thanks to
Thanks to

- My advisor, Robert Harper
Thanks to

- My advisor, Robert Harper
- My committee, Karl Crary, Frank Pfenning, and Greg Morrisett
Thanks to

✱ My advisor, Robert Harper

✱ My committee, Karl Crary, Frank Pfenning, and Greg Morrisett

✱ My coauthors, Noam Zeilberger and Jamie Morgenstern
Thanks to

✶ My advisor, Robert Harper
✶ My committee, Karl Crary, Frank Pfenning, and Greg Morrisett
✶ My coauthors, Noam Zeilberger and Jamie Morgenstern
✶ Friends in the PoP group and philosophy dept.
Thanks to

- My advisor, Robert Harper
- My committee, Karl Crary, Frank Pfenning, and Greg Morrisett
- My coauthors, Noam Zeilberger and Jamie Morgenstern
- Friends in the PoP group and philosophy dept.
- My parents
Contributions

- New examples of programming with domain-specific logics [Chapters 3 and 4]
- An investigation into mixing derivability and admissibility [Chapters 5, 6, 7, 8]
- A new notion of Directed Type Theory, corresponding to higher-dimensional category theory and homotopy theory [Chapters 7 and 8]