Focusing on Binding and Computation

Dan Licata

Joint work with Noam Zeilberger and Robert Harper

Carnegie Mellon University



Programming with Proofs

e Represent syntax, judgements, and proofs

e Reason about them via computation



Programming with Proofs

e Represent syntax, judgements, and proofs
> Binding and scope!

e Reason about them via computation
> Structural induction modulo «-equivalence



Programming with Proofs

e Represent syntax, judgements, and proofs
> Binding and scope!

e Reason about them via computation
> Structural induction modulo «-equivalence

Logical frameworks: abstractions facilitating these tasks



Programming with Proofs

e Represent syntax, judgements, and proofs
> Binding and scope!

e Reason about them via computation
> Structural induction modulo «-equivalence

Logical frameworks: abstractions facilitating these tasks

What theory of inference rules?



Derivability

A true B true
(A D B) true

e JiF Jy. derive Js, using a new axiom concluding .J;
e Does not circumscribe J;

e Structural properties:
substitution, weakening, exchange, contraction



Admissibility

P(0) true P(1)true ... n:NE= P(n) true
Vz:N.P(x) true l.e. Vz:N.P(x)true

e J1 = Jo: If Jy IS derivable then J; Iis derivable
(implication in metalogic)

e Does circumscribe J;
e.g. by distinguishing all possible cases on n: N



Admissibility

Side conditions:

| & M (leM)EL
(M,l) — error l.e. (M,l) < error

lterated inductive definitions:

path(z,y,n)  (path(z,y,m) =m > n)

shortestPath(z, y,n)



Evidence

1. Evidence for admissibility J; = Ja:
Open-ended: any transformation from J; to Js

Called computational functions (cf. Cog, NuPRL)



Evidence

1. Evidence for admissibility J; = Ja:
Open-ended: any transformation from J; to Js

Called computational functions (cf. Cog, NuPRL)

2. Evidence for derivability J; - Js:
e a uniform function: may not analyze J;

e application = substitution

e accounts for syntax with variable binding

Called representational functions (cf. LF)



Focusing on Binding and Computation

This work:

A single (simply-typed) logical framework supporting
both binding and computation.

e Two functions spaces:

representational arrow =- for derivability
computational arrow — for admissibility

e Inference rules can freely mix them



Representational Arrow

Intro:. (Au.V): P= A

> 1/ avalue of type A
> u IS a scoped datatype constructor for P

AU. U

Examples of P = P;:
; - Nucu (if ¢:(P=P))

Elim: Pattern matching

case (e: P = P)of Au.u +— e

[ Au.cu — ey



Outline

What?
e Motivating example
e Structural properties
How?

e Polarity of =
e Higher-order focusing for intuitionistic logic
e Computational open-endedness of inversion



Outline

What?
e Motivating example
e Structural properties
How?

e Polarity of =
e Higher-order focusing for intuitionistic logic
e Computational open-endedness of inversion

10



Example: Arithmetic Expressions

Language of arithmetic expressions:
e = numlk]

| letx = e in e

11



Example: Arithmetic Expressions

Language of arithmetic expressions:
e = numlk]
| letx = e in e

|61—|—62

11



Example: Arithmetic Expressions

Language of arithmetic expressions:
e = numlk]

letx = e1In ey

€1 T+ €2

€1 * €9

11



Example: Arithmetic Expressions

Language of arithmetic expressions:
e = numl|k]

letx = e1In ey

€1 T+ €2

€1 * €9

€1 — €2

11



Example: Arithmetic Expressions

Language of arithmetic expressions:
e = numl|k]

letx = e1In ey

€1 T+ €2

€1 * €9

€1 — €2

€1 div €92

11



Example: Arithmetic Expressions

Language of arithmetic expressions:
e = numlk]

letx = e1In ey

€1 T+ €2

e1 * €9

€1 — €9

€1 div €92

€1 mod €9

11



Example: Arithmetic Expressions

Language of arithmetic expressions:
e = numlk]

letx = e1In ey

€1 T+ €2

e1 * €9

€1 — €9

€1 div €92

€1 mod €9

€1 POW €9

11



Example: Arithmetic Expressions

Language of arithmetic expressions:
e = numlk]

letx = e1In ey

€1 T+ €2

e1 * €9

€1 — €9

€1 div €92

€1 mod €9

€1 POW €9

Suppose we want to treat binops unformly

11



Example: Arithmetic Expressions

Language of arithmetic expressions:
e = numlk]
| letx = e ineg

| e1 O eo
Represent binops generically by

f :nat — nat — nat

12



Example: Arithmetic Expressions

e = numl|k]
| let x = e In e9

| e1 ©Of e
Represent in our framework as type ari with constructors:

num:arl <= nat
let : ari <= ari < (ari = ari)
binop : ari <= ari <= (nat — nat — nat) <= ari

13



Example: Arithmetic Expressions

e = numl|k]
| letz = e in e

| e1 Of e
Represent in our framework as type ari with constructors:

num:ari <= nat
let : ari <= ari < (ari = ari)
binop : ari <= ari <= (nat — nat — nat) <= ari

Uses representational function for let

14



Example: Arithmetic Expressions

e = numl|k]
| letz = e in e

| e1 ©Of e
Represent in our framework as type ari with constructors:

num : arl <= nat
let : ari <= ari < (ari = ari)
binop : ari <= ari <= (nat — nat — nat) <= ari

Uses computational function for binop

15



Example: Evaluator

ev:arl — nat

ev (num p) =P
ev (binop p; f p2) — f(evps) (evpz)
ev (let pg (Au.p)) — ev (apply (Au.p) po)

- 16



Example: Evaluator

ev:arl — nat

ev (num p) =P
ev (binop p; f p2) — f(evps) (evpz)
ev (let pg (Au.p)) — ev (apply (Au.p) po)

apply a representational function by substitution:

apply: (P = A) —» (P — A)

16



Outline

What?
e Motivating example
e Structural properties
How?

e Polarity of =
e Higher-order focusing for intuitionistic logic
e Computational open-endedness of inversion

17



Structural Properties

e Properties of derivability judgement J; - Js:

apply: (P = A) —» (P — A)
weaken: A — (P = A)

e “Free” in LF: all rules are pure

May fail if rules mix derivability and admissibility!

18



Counterexample to Weakening

weaken: A — (P = A)

Counterexample:
plus : nat — nat — nat

defined by recursion on nat.

Cannot weaken to nat = nat — nat — nat:

would introduce a new case for plus

19



Our Solution

= eliminated by pattern-matching:

e NO commitment to apply, weaken

e But structural properties are definable for all LF rules,
and in many other cases. E.qg.

weaken: A — (P = A)

If P does not occur to the left of computational arrow

e Implement as a datatype-generic program

20



Outline

What?
e Motivating example
e Structural properties
How?

e Polarity of =
e Higher-order focusing for intuitionistic logic
e Computational open-endedness of inversion

21



Intro vs. Elim

Sums A & B:
e Introduced by choosing inl or inr
e Eliminated by pattern-matching

Computational functions A — B:
e Introduced by pattern-matching on A

e Eliminated by choosing an A to apply it to

29



Positive vs. Negative Polarity [Girard 93]

Sums A ¢ B are positive:

e Introduced by choosing inl or inr

e Eliminated by pattern-matching

Computationa

functions A — B are negative:

e Introduced by pattern-matching on A

e Eliminated

by choosing an A to apply it to

23



Focus vs. Inversion [Andreoli '92]

Sums A ¢ B are positive:
e Introduced by choosing inl or inr
e Eliminated by pattern-matching

Computational functions A — B are negative:
e Introduced by pattern-matching on A
e Eliminated by choosing an A to apply it to

.24



Focus vs. Inversion [Andreoli '92]

Sums A ¢ B are positive:
e Introduced by choosing inl or inr
e Eliminated by pattern-matching

Computational functions A — B are negative:
e Introduced by pattern-matching on A
e Eliminated by choosing an A to apply it to

Focus = make choices

24



Focus vs. Inversion [Andreoli '92]

Sums A ¢ B are positive:
e Introduced by choosing inl or inr
e Eliminated by pattern-matching

Computational functions A — B are negative:
e Introduced by pattern-matching on A4
e Eliminated by choosing an A to apply it to

25



Focus vs. Inversion [Andreoli '92]

Sums A ¢ B are positive:

e Introduced by choosing inl or inr

e Eliminated by pattern-matching

Computationa

functions A — B are negative:

e Introduced by pattern-matching on A4

e Eliminated

by choosing an A to apply it to

Inversion = respond to all possible choices

25



Representational Functions are Positive

e Specified by intro: Au. V

e Eliminated by pattern matching:

case (e: P = A)of {(Au.p) — e}

where p Is In an extended rule context

26



Outline

What?
e Motivating example
e Structural properties
How?

e Polarity of =
e Higher-order focusing for intuitionistic logic
e Computational open-endedness of inversion

27



Higher-order Focusing

1. Specify a type by its patterns

2. Type-independent focusing framework:
e Focus phase = choose a pattern

e Inversion phase = pattern matching

See Zeilberger [APAL] for classical logic
and Zeilberger [POPLO08] for positive half of IL

28



Sequent Calculus Judgements

Type-specific:

e Constructor patterns A I+ p :: C7
and destructor patterns Alkn :: C° > C”

Focusing framework:

e Positive focus I' - v* :: C7
and inversionI' - £* : C§ > C*

e Negative focusT'H k™ :: C”™ > C*
and inversion ' 0" : C°

e Neutral sequentsI'F e : C*
and substitutionsI' - o : A

290



Sequent Calculus Judgements

Type-specific:

e Constructor patterns AlFp:: C7
and destructor patterns Alkn :: C° > C”

Focusing framework:

e Positive focus ' ov" :: C7
and inversion T'F£*:Cj > C7

e Negative focusI'F £~ :: C7 > C7
and inversionI' 0™ : C~

e Neutral sequentsI'F e¢: C7
and substitutionsI' - o : A

30



Sequent Calculus Judgements

Judgements relative to inference rule context V.
R = P&A,---< 4]
v = |V u:R

Natural numbers:

V..t = zero:nat

succ: nat <= nat

Cf. definitional reflection [Schroeder-Heister/Hallnas]

31



Sequent Calculus Judgements

Assumptions and conclusions are contextual:
Track the free variables of a term in its type

[cf. Contextual Modal Type Theory and FOAAV]

A = | Az:C
Cc- = (WA
ct o= (W) AT

32



Patterns



Constructor Patterns: AlFp () A

A+

A" | P|R= A"
A" — B | TA"

&
[

z: (WY A" IF o (U) A

34



Constructor Patterns: AlFp () A

u:P<= A<= A, eV
Al |+ P1 - <\If> A-;

Ap IF pp o (W) AT
Ar, ..., AplFupr...pp ()P

35



Constructor Patterns: AlFp () A

AlFp: (W, u:R) A"
AlFdu.p:(U)R= A"

e R = A" binds a scoped datatype constructor
e Can pattern-match through a \
e “Shocking” type isomorphisms:

R=(A"®B") =2 (R=A")®(R= B")

36



Focusing Framework

37



Positive Focus: ' ot C°

AlbFpa:CT Tho: A
I'Eplo]: C7

e Positive value Is pattern p with substitution o
e o substitutes negative values v /x for z: C~ € A

38



Positive Inversion: 'k C" > D

VIAIFp: C". TAF ¢(p): DY
[' - cont™(¢) : C* > D

e Positive continuation is a case-analysis
e Higher-order: specified by meta-level function

p={p+—e,...}

from patterns to expressions

390



Cut Admissibility

Theorem
1. Positivecut: fI'Fo": Crand T'- k7 : C* > D* then
['Fov ek™: DT

2. Negativecut: fI'Fo™: C"and '+ k™ :: C > D™ then
thenT' v e k™ : DT

3. Substitution: fI'' AFJandT'Fo: AthenT' J |o]

40



Cut Admissibllity

Procedure is independent of connectives
E.g. for positive cut:

AlFp:C* TFo: A YAlFp:C). I''AF¢(p): D”

I'Eplo]:: CF ['F cont™(¢) : C" > DY

41



Cut Admissibility

Procedure is independent of connectives
E.g. for positive cut:

AlFp:C* TFo: A YAlFp:C). I''AF¢(p): D”

I'Eplo]:: CF ['F cont™(¢) : C" > DY

Termination depends on subformula property

41



Outline

What?
e Motivating example
e Structural properties
How?

e Polarity of =
e Higher-order focusing for intuitionistic logic
e Computational open-endedness of inversion

42



Computational Open-endedness

Inversion may have infinitely many cases:

- F cont™ (@) : (W) ari > (U,,) nat

In extension:
e ¢ must give one case for each ari expression, except
e bind variables in A for — functions from binop

Any method of presenting ¢ Is acceptable!

43



Computational Open-endedness

1. May present ¢ as function in existing proof-assistant,
reusing its pattern coverage checker

e Opportunity for datatype-generic programs

Agda implementation on the Web!
2. Or design a traditional finitary syntax (future work)

3. Theory accounts for “foreign-function interface” to
existing tools

44



Related Work

Our approach is different than

e LF/Twelf, because we permit computation in data

e FO)AV. because = introduces a fresh inference
rule, not a fresh individual

e Nominal logic, because we don’t separate name
generation from name binding (therefore no effects)

45



Related Work

Our approach is different than

e dependent de Bruijn indices, because structural
properties are implemented type-generically

e weak HOAS / hybrid approaches, because we

represent binding as positive data—can pattern
match through =

46



Conclusion

What?

e Simply-typed framework for rules that mix = and —
> Future work: dependency on data, computation

e Structural properties implemented generically,
under certain conditions

How?

e Higher-order focusing
e Contextual hypotheses and conclusions

47



Thanks for listening!



Higher-order Focusing
for Intuitionistic Logic



Polarity and Focusing

Positive type

Negative type

Intro

Focus

Inversion

Elim

Inversion

Focus

50



Constructor Patterns

A+

= A*@®B*|A*®B'||A | X

AlFc:: AT AlFc:: BT

AlFinle:: A ® BT AlFinrc:: AT @ B

Al |+ C1 -. A+ AQ | Co .. B+
A1, Ao |- (C], CQ) AT ® BT

r: A" IlFx: A r: X" IFzo X7

51



Destructor Patterns

1A* | A* — B | A°&B"
AT | X

JFen TAT > AT JFen X7 > X

AilFca AT Ayl-d B >~

A, Ay lFc;d:: AT — B™ >~

AlFd: A" >~

AlFd: B >~

Al-fst; d:: A&B™ >~ A I snd; d

L AT&BT >y

52



Right Focus, Left Inversion

Xt | C

o)
A Az«

'Fot: CF

Fl—k+:70>7

I'Fe: X > X

vy o= X | CT
r = -|IA

AlFc:C" Thko:A
'k clo]:: C7

VA c:CT): TAF¢ (c): v

['Fcont™(¢") : C" > v

53



Right Inversion, Left Focus

I'Fv :«

VIAFd:C >v): TAF@(d): v - X* el

['Fwval™(¢7) : C” M2 X7

'k O >xy

Albd:C >v T'kFo: A TEHE v >7
I'Fdlo]; k" C” >~

54



Neutral, Substitution

I'Fe:n

'Fo" o CF

'Fot: C*

['Fo: A

Lk

r:C el THE =C >~

'Fxek : v

I'oc: A T'Fo :C"

o0 /z:Ax:C”

55



Cut

'Fo :CT T'THE «C >y TkHo": C"

EET:C" >~

v k™ :y ['Fo”

I'Fe:vy THE >y TEHE 2C >

o kT

F|_k+l’)/0>’}/

I'Ee; k7 :y 'EE kB C > vy

Fl_]{?;i”}/0>’71 F|_k5’71>’7

'k ks 0>

56



ldentity

I'Fe:C">C"

ACT
I'~id: A

r:C el
I'Fx:C

57



Inconsistency

I'N'e:C"Fov : C

[ fix(z.v™) : C°

58



Operational Semantics (Positive Cut)

¢" (c) defined
¢ o] e cont™(¢") — ¢™(c) [o]

Ve (k] k) = (vF e k) k3

v ee— T

590



Operational Semantics (Negative Cut)

¢ (d) defined
val™(¢7) e (dlo]; £7) — (¢7(d) [o]) ; K7

vT e (K75 k) = (vT e kT); kT

fix(z.v™) @ k™ — v [fix(z.v7) /x| @ k~

60



Operational Semantics (Case)

e — ¢

e kT — e k7 v ikt = vt e kT

61



Patterns for
Datatypes with Binding



Contextual Formula

Pos. formula

Rule
Neg. formula

Rule Context
CPF
CNF

A+

A

v

cr o

O

= XU LA

| 1| A" ®B"|0| A*@ B*
| P | R= A" |OA"
PAl «...< 4]

X | TA"| A" — B°

| T |A&B™ | v XA

| R A B™ | 0A”

NV u: R

(W) A*

= (P) A7

63



Constructor Patterns

r: X" UlFg o X7 (WY A ;s UiFg: A

A1:;UIEp; o AT

No: UIFpy i BT

S UIE() 1 A1, Ao UIF (pg,p2) : A" ® B”

(no rule for 0)

A;UlEp: A" A;UlEp:: BY

A:;VUlEinlp:: AT @ BY A;VUlkinrp : AT® B

64



Constructor Patterns (Definitional Types)

u:P<=Al«<...< A € (X,0)
Ay UlEpy AT o0 Aps Uik p, o AT
Ar,..., A ViIFup;...py o P

AV u:RIFp:: B A:-lFp: AT
A;VUIFEANu.p:: R= B" A WIFboxp:: OA"

65



Destructor Patterns

WUl en X7 > X G UlFen TAT > (U) A7

A UiEp: AT Ag:Uikn: B >n
A1, N VUlFp:n:: AT — B™ >~

A;VUIEFn: A >~y A;VIFn: B >v

A;UlEfst; n:: A&B™ >~ A;VUlFsnd;n:: A&B™ >~

A;UlbEn: v X A /XA >~
(no rule for T) A;Wilkout; n v X A >~

66



Destructor Patterns (Definitional)

AV u:RIFn:B >~

A Wl unpack; u.n:: R A B™ > v

A;-lFni A > 7
A WUl undia; n i 0A™ > v

67



Contextual Patterns

c = V.o

= U.n

AlFc:(U)A" and AlFd:: (U) A" >~y

A;UlEp: AT A;UlEna: A >xy

AlFT.p (U AT AlFEU.n (U) A >y

68



Logical Properties



Shocking Equalities

Proposition 1 (“Shocking” equalities).
1. R=(A"®d B )~ (R= A")&® (R = B")
(cf. Vz.(A® B) =~ (Vz.A) & (Vz.B))
2. (RAANK(RAB)~RA(A&B)
(cf. (Fz.A)&(Fz.B) ~ Jz.(A&B))

Proposition 2 (Some/any).
1. (RAA)~R= |A
2. (R=A")~ R A TA"

70



Examples

71



Example

Define

and»*
andx
andx*
andx*

(true
(true
(fal se
(fal se

true )
fal se)
true )
fal se)

truel ]
se| ]
se| ]
se|[ ]

fa
fa
fa

Then - - cont™(and+ ) : (bool ® bool) > bool

72



Example

e = numlk]|e1 Ofez|letz =erines
Represent with a datatype ari:

zero : nat, succ:nat < nat,

num : arl <= nat

binop : ari <= ari <= (nat ® nat — nat) < ari
let : ari <= ari <= (ari = ari)

73



Example

Evaluator:
- F fix(ev.ev™) : (Wai) (ari — nat)
STS:

V(A IF p o (Wy,y,) ari).
(ev: (Wui)ari — nat, A) F (ev* p) : (¥,,) nat

74



Example

V(A I p o (Wyy) ari).
(ev: (Wy)ari — nat, A) - (ev* p) : (¥,,) nat

(num p) — P
(binop ps f p2) +— f (ev p1) (ev p2)
ev' (let pg (Au.p)) — ev (apply (A u.p, pg))

ev

ev

* * *

apply : (WUai) (ari = ari) — (ari — Tari)

75



Example

V(A I p o (Wyy) ari).
(ev: (Wy)ari — nat, A) - (ev* p) : (¥,,) nat

(num p) — P
(binop ps f p2) +— f (ev p1) (ev p2)
ev' (let pg (Au.p)) — ev (apply (A u.p, pg))

ev

ev

* * *

apply : (WUai) (ari = ari) — (ari — Tari)

75



	Programming with Proofs
	Programming with Proofs
	Programming with Proofs
	Programming with Proofs

	Derivability
	Admissibility
	Admissibility
	Evidence
	Evidence

	Focusing on Binding and Computation
	Representational Arrow
	Outline
	Outline
	Example: Arithmetic Expressions
	Example: Arithmetic Expressions
	Example: Arithmetic Expressions
	Example: Arithmetic Expressions
	Example: Arithmetic Expressions
	Example: Arithmetic Expressions
	Example: Arithmetic Expressions
	Example: Arithmetic Expressions

	Example: Arithmetic Expressions
	Example: Arithmetic Expressions
	Example: Arithmetic Expressions
	Example: Arithmetic Expressions
	Example: Evaluator
	Example: Evaluator

	Outline
	Structural Properties
	Counterexample to Weakening
	Our Solution
	Outline
	Intro vs. Elim
	Positive vs. Negative Polarity [Girard '93]
	Focus vs. Inversion [Andreoli '92]
	Focus vs. Inversion [Andreoli '92]

	Focus vs. Inversion [Andreoli '92]
	Focus vs. Inversion [Andreoli '92]

	Representational Functions are Positive
	Outline
	Higher-order Focusing
	Sequent Calculus Judgements
	Sequent Calculus Judgements
	Sequent Calculus Judgements
	Sequent Calculus Judgements
	Constructor Patterns: hspace {.1in} 	cpat {Delta }{p}{ct {Psi }{A^ep }}
	Constructor Patterns: hspace {.1in} 	cpat {Delta }{p}{ct {Psi }{A^ep }}
	Constructor Patterns: hspace {.1in} 	cpat {Delta }{p}{ct {Psi }{A^ep }}
	Positive Focus: hspace {.1in} 	rfoc {Gamma }{v^ep }{C^ep }
	Positive Inversion: hspace {.1in} 	linv {Gamma }{C^ep }{k^ep }{D^ep }
	Cut Admissibility
	Cut Admissibility
	Cut Admissibility

	Outline
	Computational Open-endedness
	Computational Open-endedness
	Related Work
	Related Work
	Conclusion
	Polarity and Focusing
	Constructor Patterns
	Destructor Patterns
	Right Focus, Left Inversion
	Right Inversion, Left Focus
	Neutral, Substitution
	Cut
	Identity
	Inconsistency
	Operational Semantics (Positive Cut)
	Operational Semantics (Negative Cut)
	Operational Semantics (Case)
	Contextual Formula
	Constructor Patterns
	Constructor Patterns (Definitional Types)
	Destructor Patterns
	Destructor Patterns (Definitional)
	Contextual Patterns
	Shocking Equalities
	Example
	Example
	Example
	Example
	Example


