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Programming with Proofs

e Represent syntax, judgements, and proofs
> Binding and scope!

e Reason about them via computation
> Structural induction modulo «-equivalence

Logical frameworks: abstractions facilitating these tasks

What theory of inference rules?



Derivability

A true B true
(A D B) true

e JiF Jy. derive Js, using a new axiom concluding .J;
e Does not circumscribe J;

e Structural properties:
substitution, weakening, exchange, contraction



Admissibility

P(0) true P(1)true ... n:NE= P(n) true
Vz:N.P(x) true l.e. Vz:N.P(x)true

e J1 = Jo: If Jy IS derivable then J; Iis derivable
(implication in metalogic)

e Does circumscribe J;
e.g. by distinguishing all possible cases on n: N



Admissibility

Side conditions:

| & M (leM)EL
(M,l) — error l.e. (M,l) < error

lterated inductive definitions:

path(z,y,n)  (path(z,y,m) =m > n)

shortestPath(z, y,n)
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1. Evidence for admissibility J; = Ja:
Open-ended: any transformation from J; to Js

Called computational functions (cf. Cog, NuPRL)



Evidence

1. Evidence for admissibility J; = Ja:
Open-ended: any transformation from J; to Js

Called computational functions (cf. Cog, NuPRL)

2. Evidence for derivability J; - Js:
e a uniform function: may not analyze J;

e application = substitution

e accounts for syntax with variable binding

Called representational functions (cf. LF)



Focusing on Binding and Computation

This work:

A single (simply-typed) logical framework supporting
both binding and computation.

e Two functions spaces:

representational arrow =- for derivability
computational arrow — for admissibility

e Inference rules can freely mix them



Representational Arrow

Intro:. (Au.V): P= A

> 1/ avalue of type A
> u IS a scoped datatype constructor for P

AU. U

Examples of P = P;:
; - Nucu (if ¢:(P=P))

Elim: Pattern matching

case (e: P = P)of Au.u +— e

[ Au.cu — ey



Outline

What?
e Motivating example
e Structural properties
How?

e Polarity of =
e Higher-order focusing for intuitionistic logic
e Computational open-endedness of inversion
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Example: Arithmetic Expressions

Language of arithmetic expressions:
e = numlk]

| letx = e in e
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Example: Arithmetic Expressions

Language of arithmetic expressions:
e = numlk]

letx = e1In ey

€1 T+ €2

e1 * €9

€1 — €9

€1 div €92

€1 mod €9

€1 POW €9

Suppose we want to treat binops unformly
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Example: Arithmetic Expressions

Language of arithmetic expressions:
e = numlk]
| letx = e ineg

| e1 O eo
Represent binops generically by

f :nat — nat — nat

12



Example: Arithmetic Expressions

e = numl|k]
| let x = e In e9

| e1 ©Of e
Represent in our framework as type ari with constructors:

num:arl <= nat
let : ari <= ari < (ari = ari)
binop : ari <= ari <= (nat — nat — nat) <= ari
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Example: Arithmetic Expressions

e = numl|k]
| letz = e in e

| e1 ©Of e
Represent in our framework as type ari with constructors:

num : arl <= nat
let : ari <= ari < (ari = ari)
binop : ari <= ari <= (nat — nat — nat) <= ari

Uses computational function for binop

15



Example: Evaluator

ev:arl — nat

ev (num p) =P
ev (binop p; f p2) — f(evps) (evpz)
ev (let pg (Au.p)) — ev (apply (Au.p) po)

- 16



Example: Evaluator

ev:arl — nat

ev (num p) =P
ev (binop p; f p2) — f(evps) (evpz)
ev (let pg (Au.p)) — ev (apply (Au.p) po)

apply a representational function by substitution:

apply: (P = A) —» (P — A)

16



Outline

What?
e Motivating example
e Structural properties
How?

e Polarity of =
e Higher-order focusing for intuitionistic logic
e Computational open-endedness of inversion

17



Structural Properties

e Properties of derivability judgement J; - Js:

apply: (P = A) —» (P — A)
weaken: A — (P = A)

e “Free” in LF: all rules are pure

May fail if rules mix derivability and admissibility!

18



Counterexample to Weakening

weaken: A — (P = A)

Counterexample:
plus : nat — nat — nat

defined by recursion on nat.

Cannot weaken to nat = nat — nat — nat:

would introduce a new case for plus

19



Our Solution

= eliminated by pattern-matching:

e NO commitment to apply, weaken

e But structural properties are definable for all LF rules,
and in many other cases. E.qg.

weaken: A — (P = A)

If P does not occur to the left of computational arrow

e Implement as a datatype-generic program

20



Outline

What?
e Motivating example
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How?

e Polarity of =
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Intro vs. Elim

Sums A & B:
e Introduced by choosing inl or inr
e Eliminated by pattern-matching

Computational functions A — B:
e Introduced by pattern-matching on A

e Eliminated by choosing an A to apply it to

29



Positive vs. Negative Polarity [Girard 93]

Sums A ¢ B are positive:

e Introduced by choosing inl or inr

e Eliminated by pattern-matching

Computationa

functions A — B are negative:

e Introduced by pattern-matching on A

e Eliminated

by choosing an A to apply it to

23



Focus vs. Inversion [Andreoli '92]

Sums A ¢ B are positive:
e Introduced by choosing inl or inr
e Eliminated by pattern-matching

Computational functions A — B are negative:
e Introduced by pattern-matching on A
e Eliminated by choosing an A to apply it to

.24



Focus vs. Inversion [Andreoli '92]

Sums A ¢ B are positive:
e Introduced by choosing inl or inr
e Eliminated by pattern-matching

Computational functions A — B are negative:
e Introduced by pattern-matching on A
e Eliminated by choosing an A to apply it to

Focus = make choices

24



Focus vs. Inversion [Andreoli '92]

Sums A ¢ B are positive:
e Introduced by choosing inl or inr
e Eliminated by pattern-matching
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Focus vs. Inversion [Andreoli '92]

Sums A ¢ B are positive:

e Introduced by choosing inl or inr

e Eliminated by pattern-matching

Computationa

functions A — B are negative:

e Introduced by pattern-matching on A4

e Eliminated

by choosing an A to apply it to

Inversion = respond to all possible choices

25



Representational Functions are Positive

e Specified by intro: Au. V

e Eliminated by pattern matching:

case (e: P = A)of {(Au.p) — e}

where p Is In an extended rule context

26



Outline

What?
e Motivating example
e Structural properties
How?

e Polarity of =
e Higher-order focusing for intuitionistic logic
e Computational open-endedness of inversion
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Higher-order Focusing

1. Specify a type by its patterns

2. Type-independent focusing framework:
e Focus phase = choose a pattern

e Inversion phase = pattern matching

See Zeilberger [APAL] for classical logic
and Zeilberger [POPLO08] for positive half of IL

28



Sequent Calculus Judgements

Type-specific:

e Constructor patterns A I+ p :: C7
and destructor patterns Alkn :: C° > C”

Focusing framework:

e Positive focus I' - v* :: C7
and inversionI' - £* : C§ > C*

e Negative focusT'H k™ :: C”™ > C*
and inversion ' 0" : C°

e Neutral sequentsI'F e : C*
and substitutionsI' - o : A

290



Sequent Calculus Judgements

Type-specific:

e Constructor patterns AlFp:: C7
and destructor patterns Alkn :: C° > C”

Focusing framework:

e Positive focus ' ov" :: C7
and inversion T'F£*:Cj > C7

e Negative focusI'F £~ :: C7 > C7
and inversionI' 0™ : C~

e Neutral sequentsI'F e¢: C7
and substitutionsI' - o : A

30



Sequent Calculus Judgements

Judgements relative to inference rule context V.
R = P&A,---< 4]
v = |V u:R

Natural numbers:

V..t = zero:nat

succ: nat <= nat

Cf. definitional reflection [Schroeder-Heister/Hallnas]

31



Sequent Calculus Judgements

Assumptions and conclusions are contextual:
Track the free variables of a term in its type

[cf. Contextual Modal Type Theory and FOAAV]

A = | Az:C
Cc- = (WA
ct o= (W) AT

32



Patterns



Constructor Patterns: AlFp () A

A+

A" | P|R= A"
A" — B | TA"

&
[

z: (WY A" IF o (U) A

34



Constructor Patterns: AlFp () A

u:P<= A<= A, eV
Al |+ P1 - <\If> A-;

Ap IF pp o (W) AT
Ar, ..., AplFupr...pp ()P

35



Constructor Patterns: AlFp () A

AlFp: (W, u:R) A"
AlFdu.p:(U)R= A"

e R = A" binds a scoped datatype constructor
e Can pattern-match through a \
e “Shocking” type isomorphisms:

R=(A"®B") =2 (R=A")®(R= B")

36



Focusing Framework

37



Positive Focus: ' ot C°

AlbFpa:CT Tho: A
I'Eplo]: C7

e Positive value Is pattern p with substitution o
e o substitutes negative values v /x for z: C~ € A

38



Positive Inversion: 'k C" > D

VIAIFp: C". TAF ¢(p): DY
[' - cont™(¢) : C* > D

e Positive continuation is a case-analysis
e Higher-order: specified by meta-level function

p={p+—e,...}

from patterns to expressions

390



Cut Admissibility

Theorem
1. Positivecut: fI'Fo": Crand T'- k7 : C* > D* then
['Fov ek™: DT

2. Negativecut: fI'Fo™: C"and '+ k™ :: C > D™ then
thenT' v e k™ : DT

3. Substitution: fI'' AFJandT'Fo: AthenT' J |o]

40



Cut Admissibllity

Procedure is independent of connectives
E.g. for positive cut:

AlFp:C* TFo: A YAlFp:C). I''AF¢(p): D”

I'Eplo]:: CF ['F cont™(¢) : C" > DY
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Cut Admissibility

Procedure is independent of connectives
E.g. for positive cut:

AlFp:C* TFo: A YAlFp:C). I''AF¢(p): D”

I'Eplo]:: CF ['F cont™(¢) : C" > DY

Termination depends on subformula property

41



Outline

What?
e Motivating example
e Structural properties
How?

e Polarity of =
e Higher-order focusing for intuitionistic logic
e Computational open-endedness of inversion

42



Computational Open-endedness

Inversion may have infinitely many cases:

- F cont™ (@) : (W) ari > (U,,) nat

In extension:
e ¢ must give one case for each ari expression, except
e bind variables in A for — functions from binop

Any method of presenting ¢ Is acceptable!

43



Computational Open-endedness

1. May present ¢ as function in existing proof-assistant,
reusing its pattern coverage checker

e Opportunity for datatype-generic programs

Agda implementation on the Web!
2. Or design a traditional finitary syntax (future work)

3. Theory accounts for “foreign-function interface” to
existing tools

44



Related Work

Our approach is different than

e LF/Twelf, because we permit computation in data

e FO)AV. because = introduces a fresh inference
rule, not a fresh individual

e Nominal logic, because we don’t separate name
generation from name binding (therefore no effects)

45



Related Work

Our approach is different than

e dependent de Bruijn indices, because structural
properties are implemented type-generically

e weak HOAS / hybrid approaches, because we

represent binding as positive data—can pattern
match through =

46



Conclusion

What?

e Simply-typed framework for rules that mix = and —
> Future work: dependency on data, computation

e Structural properties implemented generically,
under certain conditions

How?

e Higher-order focusing
e Contextual hypotheses and conclusions

47



Thanks for listening!



Higher-order Focusing
for Intuitionistic Logic



Polarity and Focusing

Positive type

Negative type

Intro

Focus

Inversion

Elim

Inversion

Focus

50



Constructor Patterns

A+

= A*@®B*|A*®B'||A | X

AlFc:: AT AlFc:: BT

AlFinle:: A ® BT AlFinrc:: AT @ B

Al |+ C1 -. A+ AQ | Co .. B+
A1, Ao |- (C], CQ) AT ® BT

r: A" IlFx: A r: X" IFzo X7

51



Destructor Patterns

1A* | A* — B | A°&B"
AT | X

JFen TAT > AT JFen X7 > X

AilFca AT Ayl-d B >~

A, Ay lFc;d:: AT — B™ >~

AlFd: A" >~

AlFd: B >~

Al-fst; d:: A&B™ >~ A I snd; d

L AT&BT >y

52



Right Focus, Left Inversion

Xt | C

o)
A Az«

'Fot: CF

Fl—k+:70>7

I'Fe: X > X

vy o= X | CT
r = -|IA

AlFc:C" Thko:A
'k clo]:: C7

VA c:CT): TAF¢ (c): v

['Fcont™(¢") : C" > v

53



Right Inversion, Left Focus

I'Fv :«

VIAFd:C >v): TAF@(d): v - X* el

['Fwval™(¢7) : C” M2 X7

'k O >xy

Albd:C >v T'kFo: A TEHE v >7
I'Fdlo]; k" C” >~
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Neutral, Substitution

I'Fe:n

'Fo" o CF

'Fot: C*

['Fo: A

Lk

r:C el THE =C >~

'Fxek : v

I'oc: A T'Fo :C"

o0 /z:Ax:C”
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Cut

'Fo :CT T'THE «C >y TkHo": C"

EET:C" >~

v k™ :y ['Fo”

I'Fe:vy THE >y TEHE 2C >

o kT

F|_k+l’)/0>’}/

I'Ee; k7 :y 'EE kB C > vy

Fl_]{?;i”}/0>’71 F|_k5’71>’7

'k ks 0>

56



ldentity

I'Fe:C">C"

ACT
I'~id: A

r:C el
I'Fx:C

57



Inconsistency

I'N'e:C"Fov : C

[ fix(z.v™) : C°

58



Operational Semantics (Positive Cut)

¢" (c) defined
¢ o] e cont™(¢") — ¢™(c) [o]

Ve (k] k) = (vF e k) k3

v ee— T

590



Operational Semantics (Negative Cut)

¢ (d) defined
val™(¢7) e (dlo]; £7) — (¢7(d) [o]) ; K7

vT e (K75 k) = (vT e kT); kT

fix(z.v™) @ k™ — v [fix(z.v7) /x| @ k~

60



Operational Semantics (Case)

e — ¢

e kT — e k7 v ikt = vt e kT

61



Patterns for
Datatypes with Binding



Contextual Formula

Pos. formula

Rule
Neg. formula

Rule Context
CPF
CNF

A+

A

v

cr o

O

= XU LA

| 1| A" ®B"|0| A*@ B*
| P | R= A" |OA"
PAl «...< 4]

X | TA"| A" — B°

| T |A&B™ | v XA

| R A B™ | 0A”

NV u: R

(W) A*

= (P) A7

63



Constructor Patterns

r: X" UlFg o X7 (WY A ;s UiFg: A

A1:;UIEp; o AT

No: UIFpy i BT

S UIE() 1 A1, Ao UIF (pg,p2) : A" ® B”

(no rule for 0)

A;UlEp: A" A;UlEp:: BY

A:;VUlEinlp:: AT @ BY A;VUlkinrp : AT® B

64



Constructor Patterns (Definitional Types)

u:P<=Al«<...< A € (X,0)
Ay UlEpy AT o0 Aps Uik p, o AT
Ar,..., A ViIFup;...py o P

AV u:RIFp:: B A:-lFp: AT
A;VUIFEANu.p:: R= B" A WIFboxp:: OA"

65



Destructor Patterns

WUl en X7 > X G UlFen TAT > (U) A7

A UiEp: AT Ag:Uikn: B >n
A1, N VUlFp:n:: AT — B™ >~

A;VUIEFn: A >~y A;VIFn: B >v

A;UlEfst; n:: A&B™ >~ A;VUlFsnd;n:: A&B™ >~

A;UlbEn: v X A /XA >~
(no rule for T) A;Wilkout; n v X A >~
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Destructor Patterns (Definitional)

AV u:RIFn:B >~

A Wl unpack; u.n:: R A B™ > v

A;-lFni A > 7
A WUl undia; n i 0A™ > v

67



Contextual Patterns

c = V.o

= U.n

AlFc:(U)A" and AlFd:: (U) A" >~y

A;UlEp: AT A;UlEna: A >xy

AlFT.p (U AT AlFEU.n (U) A >y

68



Logical Properties



Shocking Equalities

Proposition 1 (“Shocking” equalities).
1. R=(A"®d B )~ (R= A")&® (R = B")
(cf. Vz.(A® B) =~ (Vz.A) & (Vz.B))
2. (RAANK(RAB)~RA(A&B)
(cf. (Fz.A)&(Fz.B) ~ Jz.(A&B))

Proposition 2 (Some/any).
1. (RAA)~R= |A
2. (R=A")~ R A TA"

70



Examples
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Example

Define

and»*
andx
andx*
andx*

(true
(true
(fal se
(fal se

true )
fal se)
true )
fal se)

truel ]
se| ]
se| ]
se|[ ]

fa
fa
fa

Then - - cont™(and+ ) : (bool ® bool) > bool
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Example

e = numlk]|e1 Ofez|letz =erines
Represent with a datatype ari:

zero : nat, succ:nat < nat,

num : arl <= nat

binop : ari <= ari <= (nat ® nat — nat) < ari
let : ari <= ari <= (ari = ari)

73



Example

Evaluator:
- F fix(ev.ev™) : (Wai) (ari — nat)
STS:

V(A IF p o (Wy,y,) ari).
(ev: (Wui)ari — nat, A) F (ev* p) : (¥,,) nat
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Example

V(A I p o (Wyy) ari).
(ev: (Wy)ari — nat, A) - (ev* p) : (¥,,) nat

(num p) — P
(binop ps f p2) +— f (ev p1) (ev p2)
ev' (let pg (Au.p)) — ev (apply (A u.p, pg))

ev

ev

* * *

apply : (WUai) (ari = ari) — (ari — Tari)
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Example

V(A I p o (Wyy) ari).
(ev: (Wy)ari — nat, A) - (ev* p) : (¥,,) nat

(num p) — P
(binop ps f p2) +— f (ev p1) (ev p2)
ev' (let pg (Au.p)) — ev (apply (A u.p, pg))

ev

ev

* * *

apply : (WUai) (ari = ari) — (ari — Tari)
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