
15-819K: Logic Programming

Final Project Report

A Simple Module System for Twelf

Dan Licata, Rob Simmons, Daniel Lee

December 15, 2006

Abstract

Twelf is an implementation of the LF logical framework and the Elf
logic programming language that provides several automated analy-
ses of Elf programs. It is increasingly used in the development and
study of large deductive systems, such as programming languages
and logics. Such large projects would benefit from language exten-
sions that facilitate extensible code reuse and modular development.
Drawing on prior work with module systems for LF and Elf, have de-
signed and prototyped a simple module system for Twelf. The mod-
ule system supports namespace management and simple forms of pa-
rameterization and reuse. It is defined by elaboration into the current
Twelf implementation.

1 Introduction

LF [Harper et al., 1993] is a logical framework used to represent deductive
systems such as programming languages and logics. Elf [Pfenning, 1989]
is a logic programming language that endows LF with an operational se-
mantics based on proof search. Twelf [Pfenning and Schürmann, 1999] is
an implementation of LF and Elf that provides various analyses, such as
mode, coverage, and termination, of Elf programs. Metatheorems1 about
deductive systems can be represented in Twelf as logic programs that sat-
isfy certain totality analyses. Consequently, Twelf’s analyses simultane-

1In this report, we will use the words “directive”, “analysis”, and “assertion” for Twelf
directives such as mode, worlds, and totality, whereas we will use the word “metatheorem”
more broadly to refer to any proposition about a deductive system.

FINAL PROJECT REPORT DECEMBER 15, 2006

A Simple Module System for Twelf 2

ously ensure that logic programs will run correctly and verify metatheo-
retic properties of deductive systems.

Though Twelf is currently used in awide variety of large research projects
(see, for example, Crary [2003], Lee et al. [2007], and Appel [2001]), users
often request two additional features:

• Namespacemanagement: Current Twelf code is defined in one global
namespace, which creates tedious work for developers and prevents
modular development (e.g., to integrate two pieces of code, a devel-
oper must manually resolve name collisions). The absence of names-
pace management also impedes the development and distribution of
re-usable Twelf libraries.

• Extensibility: There is often a need to compose fragments of Twelf
signatures into a larger Twelf signature. For example, it is sometimes
desirable to reuse an LF type family with two different modes with-
out copying its definition, or to to define fragments of deductive sys-
tems and compose them together to form several concrete systems—
without copying the common declarations. At present, Twelf pro-
vides no support for these circumstances.

Both of these features can be provided by a module system. In prior
work, Harper and Pfenning [1998] presented a module system for Elf. In
unpublished work, Watkins gave a simplified module language for LF,
and Licata, Harper, and Pfenning (LHP) reformulated and implemented a
stand-alone prototype of Watkins’ design. These module systems support
namespacemanagement by permitting code to be structured into hierarchi-
cal modules; they also provide conveniences for managing names familiar
from ML-style module systems, such as dot notation and open. Addition-
ally, these proposals support extensible LF signatures through features fa-
miliar fromML, such functors, include, and where type. However, these pro-
posals account only for LF or early versions of Elf; none are defined for the
full Twelf language.

In this project, we have designed a preliminary module language for
Twelf. Our module language provides namespace-management and ex-
tensibility features similar to those of the Watkins and LHP proposals. The
key technical contribution of our design is the formalization of an elabo-
ration relation from the module language into Twelf signatures. We have
also produced a prototype implementation of a considerable subset of this
elaboration that is designed around making calls into the current Twelf im-

FINAL PROJECT REPORT DECEMBER 15, 2006

A Simple Module System for Twelf 3

plementation, rather than modifying the Twelf implementation to support
the features of the module language.

There is a considerable body of prior work on module systems for logic
programming languages and proof assistants. Although there is no stan-
dard module system adopted by the various Prologs, a number of Prolog
implementations provide module systems. These module systems allow
programmers to create modules by defining new predicates or importing
definitions from existing modules. Haemmerlé and Fages [2006] make a
comparison between themodule systems of the SICStus, ECLiPSe, SWIPro-
log, Ciao Prolog, and XSB Prolog implementations. Miller [1994] proposed
a module system for λProlog, which has since found its way into various
implementations of the language. In his proposal, Miller gives a seman-
tics for the modular constructs of λProlog in terms of logical connectives
already extant in the higher-order theory of hereditary Harrop formulas on
which λProlog is based.

There is precedent formodule systems in other implementations of logi-
cal frameworks/proof assistants. Isabelle [Nipkow et al., 2002] is a theorem
prover that can be instantiated over a number of different meta-logics. The
Isabelle/HOL theorem prover supports modular reasoning [Kammüller,
2000] with the combined use of locales [Kammüller et al., 1999] and depen-
dent types. In Isabelle, locales are a mechanism by which certain assump-
tions can be given local scope. These are used in conjunctionwith theΠ and
Σ types of HOL to create modules. Consequently, this particular technique
for using modules in Isabelle/HOL does not necessarily transfer instantia-
tions of Isabelle on meta-logics that lack these dependent types. The Coq
proof assistant Coq Development Team [2006] has a module system that
supports modules and abstraction via functors. Coq’s program extraction
utility translates Coq modules, functors, and signatures into the analogous
OCaml constructs.

The remainder of this report is organized as follows: In Section 2, we
overview the features of our module system. In Section 3, we formally
define our module language and its elaboration into Twelf. In Section 4,
we briefly describe our implementation of our module system and discuss
what would be necessary in order to interface it would the existing Twelf
implementation. In Section 5, we discuss future extensions of this work
and conclude.

FINAL PROJECT REPORT DECEMBER 15, 2006

A Simple Module System for Twelf 4

nat : type.

z : nat.

s : nat -> nat.

%freeze nat.

tp : type.

tp-unit : tp.

tp-nat : tp.

tp-arrow : tp -> tp.

%freeze tp.

tm : type.

tm-unit : tm.

tm-nat : nat -> tm.

tm-lam :

tp -> (tm -> tm) -> tm.

tm-app : tm -> tm -> tm.

%freeze tm.

Nat : %sig

nat : type.

z : nat.

s : nat -> nat.

%end.

Tp : %sig

tp : type.

unit : tp.

nat : tp.

arrow : tp -> tp.

%end.

Tm : %sig

tm : type.

unit : tm.

nat : Nat.nat -> tm.

lam :

Tp.tp -> (tm -> tm) -> tm.

app : tm -> tm -> tm.

%end.

Figure 1: The simply typed lambda calculus with natural numbers, demon-
strating how namespace management is done in core Twelf (left) and how
it can be done in Twelf with modules (right)

2 Language Overview

This section will describe our module system through a series of examples.
In this report, we will use green code to represent “core Twelf,” the current
Twelf language. We will use red to refer to code written for Twelf extended
with a module system.

2.1 Namespace management

In core Twelf, all names are global, and any name can be reused; later in-
stances of names shadow earlier ones. For example, if tp-unit and tm-unit
in Figure 1 were instead both called unit, it would be impossible to re-
fer to the unit of type tp later in the file, the first instance of the identi-
fier would be shadowed by second. A similar representation for the same

FINAL PROJECT REPORT DECEMBER 15, 2006

A Simple Module System for Twelf 5

x : type.

A : %sig

b = x.

x : type.

B : %sig

x : type.

%end.

c = B.x

%end.

d = A.x

e = A.B.x

Figure 2: Shadowing in modules.

simply-typed lambda calculus using modules allows for there to be mul-
tiple terms referred to by the identifier unit which exist in different mod-
ules, and therefore in different namespaces. Writing the full path, such as
Nat.nat, allows us to refer to identifiers in previously defined modules.
Within module signatures, identifiers are required to be unique, with

the exception that any number of declarations (such as cases of metathe-
orems) can be left unnamed by using the existing idiom of naming them
“ ”. Because module signatures are a relatively small, local scope rather
than the global scope of the Twelf top level, we believe this is a reasonable
restriction.

2.2 Scope within modules

Figure 2 demonstrates the way paths and shadowing work within Twelf
structures and sub-structures. Variables from previous scopes are available
up to the point where they are re-defined, which is what allows the line
b = x to work. Variables from previously defined modules can be referred
to by using the variable’s path relative to the current location, which is why
the path B.x in the definition of c does not need to be A.B.x like it does in
the definition of e.
The declaration %open allows the programmer to bring all the identifiers

from some other module within the current scope. At the top level, %open
may cause other identifiers to be shadowed. However, inside module sig-

FINAL PROJECT REPORT DECEMBER 15, 2006

A Simple Module System for Twelf 6

Nat : %sig

nat : type.

z : nat.

s : nat -> nat.

%end.

NatPlus : %sig

%open Nat.

plus :

nat -> nat -> nat -> type.

plus/z : plus z N N.

plus/s : plus (s N) M (s P)

<- plus N M P.

%end.

NAT = %sig

nat : type.

z : nat.

s : nat -> nat.

%end.

NATPLUS = %sig

%include NAT.

plus :

nat -> nat -> nat -> type.

plus/z : plus z N N.

plus/s : plus (s N) M (s P)

<- plus N M P.

%end.

NatPlus : NATPLUS.

Figure 3: Parallel examples of creating larger signatures by opening mod-
ules (left) and including signatures (right)

natures, an %open declaration is subject to the restriction that no names in
the opened module collide with other names in the signature. Looking at 2,
it would be an error to call %open B from within the scope of the module A,
because the module A and the module B both have an identifier x in them.

2.3 The signature calculus

So far, whenever we have used a %sig ... %end, we have immediately
taken a module of that signature by writing M: %sig ... %end. Further-
more, whenever we have defined a type, such as nat, tm, or tp within a
module, we have described all of the objects of those types within the mod-
ule. These two facts are related; it is our intention that when we create a
new a type within a signature, when we take a module of that signature,
Twelf will no longer allow more objects of that type to be created.
For cases where we want to define a signature without fully defining

the constants of that type, we can declare signature variables. Figure 3 rep-
resents how this can be used to write a signature for addition of natural
numbers: the example on the left uses %open on modules, and the example
on the right uses %include on signatures. The two examples are somewhat

FINAL PROJECT REPORT DECEMBER 15, 2006

A Simple Module System for Twelf 7

LAM = %sig

exp : type.

lam : (exp -> exp) -> exp.

app : exp -> exp -> exp.

%end.

NAT = %sig

nat : type.

z : nat.

s : nat -> nat

%end.

(continued in next column)

LamPairs : %sig

%include LAM.

pair : exp -> exp -> exp.

%end.

LamNat : %sig

%include LAM.

%include NAT.

n : nat -> exp.

%end.

Figure 4: Using %includewith type variables to create two parallel versions
of an untyped lambda calculus, one extended with primitive pairs, and the
other extended with primitive natural numbers.

different functionally - in the first example, Nat.z and NatPlus.z are equiv-
alent constants. In the example at the right, the only way we can access the
constant representing zero is NatPlus.z. If we were to write Nat : NAT.

in the example on the right, the Nat.zwould not be the same as NatPlus.z,
because taking a module of a signature creates a fresh copy of everything
in that signature.

In Figure 4, we see some of the power of the %include signature direc-
tive for reducing the duplication of code. We can define the basic pieces of
the lambda calculus in the signature LAM, and then easily extend it in two
different ways.

Figure 5 shows a different way of using signatures to reuse code, this
time by using where. The where construct allows components of a mod-
ule to be instantiated with previously-defined components. In the exam-
ple in Figure 5, the type family elet is instantiated twice, once with the
type nat and once with the type exp. This permits the definition of LIST
to be reused without textually copying it. The where mechanism also per-
mits entire module declarations to be retroactively defined to be an existing
module, as shown in the instantiation of TNat in Figure 6.

FINAL PROJECT REPORT DECEMBER 15, 2006

A Simple Module System for Twelf 8

exp : type.

lam : (exp -> exp) -> exp.

app : exp -> exp -> exp.

nat : type.

z : nat.

s : nat -> nat.

explist : type.

exp_nil : explist.

exp_cons :

exp -> explist -> explist.

natlist : type.

nat_nil : natlist.

nat_cons :

nat -> natlist -> natlist.

exp : type.

lam : (exp -> exp) -> exp.

app : exp -> exp -> exp.

nat : type.

z : nat.

s : nat -> nat.

LIST = %sig

elet : type.

list : type.

nil : list.

cons : elet -> list -> list.

%end.

NatList :

LIST where elet := nat.

ExpList :

LIST where elet := exp.

Figure 5: List data structures in core Twelf (left) have to be redefined for
each type that the programmer needs a list of. Using Twelf with modules
(right), the programmer can get many of the benefits of polymorphism on
lists by defining the signature LIST and then substituting in the correct type
with where.

FINAL PROJECT REPORT DECEMBER 15, 2006

A Simple Module System for Twelf 9

NAT = %sig

nat : type.

z : nat.

s : nat -> nat.

%end.

TIMES = %sig

TNat : NAT. %open TNat.

times :

nat -> nat -> nat -> type.

times/z : times z N z.

%mode times +A +B -C.

%worlds () (times _ _ _).

%total T (times T _ _).

%end.

Nat : NAT.

(continued in next column)

Plus : %sig

%open Nat.

plus :

nat -> nat -> nat -> type.

plus/z : plus z N N.

plus/s : plus (s N) M (s P)

<- plus N M P.

%mode plus +A +B -C.

%worlds () (plus _ _ _).

%total T (plus T _ _).

%end.

Times : %sig

%include TIMES

%open Plus.

times/s : times (s N) M Q

<- times N M P

<- plus M P Q.

%end where TNat := Nat.

Figure 6: Demonstrates the delayed running of Twelf directives. The to-
tality assertion for times is false based on the information in the signa-
ture TIMES (left), but additional information given when the signature is
extended allows the totality assertion to hold when it is checked (right).

FINAL PROJECT REPORT DECEMBER 15, 2006

A Simple Module System for Twelf 10

2.4 Twelf directives

The primary difference between a module system for LF or Elf and a mod-
ule system for Twelf is that a module system for Twelf must account for the
large number of directives which can have effects on the behavior of Twelf.
The module system design must decide at what point these directives are
run.

Our module system design takes the following approach. A signature
can include un-enforced or un-verified Twelf directives, but it must contain
only valid LF terms. When a top-level module of a signature is created, the
signature is split into two parts. The first is a pure LF signature, along with
certain Twelf directives that can be run eagerly to improve error messages.
Currently the only such directive that we implement is %name, though oth-
ers could be added. The pure LF part only needs a check to ensure that it
is not extending any type families which Twelf has frozen. After this has
occurred, the remaining Twelf directives are run. For example, this design
permits a module signature to contain a totality assertion for a type family
before before all the constants implementing that family have been speci-
fied. It is only when wemake a module out of the signature that the totality
of the type family is checked. This is demonstrated in Figure 6.

The full list of directives that are split off and not run until the signature
is made into a module is %query, %fquery, %querytabled, %mode, %unique,
%covers, %total, %terminates, %reduces, %theorem, %prove, %establish,
%assert, %worlds, %deterministic, and %clause.

Additionally, we disallow some declarations from appearing in mod-
ule signatures at all. Essentially, these are directives which would not be-
have well under the signature-splitting action. %define and %solve intro-
duce constants that later LF objects might depend on, and the meaning
of %freeze and %thaw declarations would change if they were moved—
besides, within a signature the freezing that happens automatically at mod-
ule boundaries should be sufficient. Finally, the %use declaration introduc-
ing a constraint domain would not have any obvious meaning within a
signature.

3 Language Definition

3.1 Elaboration Target: Twelf

Our interface to Twelf consists of the following abstract syntax:

FINAL PROJECT REPORT DECEMBER 15, 2006

A Simple Module System for Twelf 11

Name x ::= id |
Expression e ::= x | type |Π x:e. e′ | e e′ |λ x:e. e′ | e : e′

Signature Σ ::= · |Σ, d
Declaration d ::= x : e | x : e =a e′ | block x = bs | x : %α
Abbreviation Flag a ::= · |%abbrev

Block Specification bs ::= some (xi : ei) block (xj : ej)
Directives %α ::= . . .
Expressions e range over all LF objects, families, and kinds. Twelf sig-

natures Σ consist of constant declarations, constant definitions and abbre-
viations (tagged with %abbrev), block declarations, and Twelf directives.
Our elaboration judgements assume that Twelf directives are named in Σ.
We elide the enumeration of all Twelf directives%α.
We assume Twelf provides the following judgements:

• Σ ⊢ e class Σ ⊢ e ≡ e′ class Σ ⊢ x famconst The first two judge-
ments define formation and equality of classifiers (types and kinds).
This judgement depends only on LF notions, and, for example, does
not take account of the Twelf notion of freezing. The third identifies
family-level constants.

• Σ ⊢ e : e′ Σ ⊢ e ≡ e′ : e′′ These judgements define formation and
equality of expressions at classifiers (objects at types and families at
kinds).

• Σ ⊢ bs blockspec Σ ⊢ bs ≡ bs′ blockspec These judgements define
formation and equality of block specifications, where equality of block
specifications lifts equality of the embedded expressions.

• Σ ⊢ %α dir Σ ⊢ %α ≡ %α′ dir These judgements define formation
and equality of directives. Formation of directives checks that all
identifiers and terms are well-formed; equality lifts equality of the
embedded expressions.

• Σ ⊢ %α succeeds Check that the directive succeeds.

• Σ ⊢ Σ′ sig Check that the Twelf signature Σ′ is well-formed.

3.2 Syntax of Module Language

The abstract syntax of our module and signature extension is defined by
the following grammar:

FINAL PROJECT REPORT DECEMBER 15, 2006

A Simple Module System for Twelf 12

Label l ::= id

Label Or Underscore L ::= l |
Expression e ::= x | type |Π x:e. e′ | e e′ |λ x:e. e′ | e : e′ | p
Path p ::= l | l.p
Shared Declaration d ::= L : e | L : e =a e′ | block l = bs | L : %α

| l : S | l :S = p | open p

Mod. Sig. Decl. D ::= · | d. D | include S. D | block l. D
| block l = p. D | L : %α = p. D

Module Signature S ::= sig D end |Swhere N | l
Mod. Sig. Inst. N ::= p := e | p := bs | p := p′

Block Specification bs ::= some (xi : ei) block (xj : ej)
Top-Level Signature Σ ::= · |Σ,d |Σ,l=S

The language of LF expressions is extended with paths p, which are
non-empty sequences of identifiers. Some declarations d are shared be-
tween module signatures and top-level signatures: LF constant declara-
tions and definitions, block declarations, Twelf directives, structure decla-
rations and definitions, and opened modules. Module signature declara-
tions D contain several additional declarations which permit one signature
to be included into another, undefined blocks to be declared (for the pur-
pose of later instantiations), and blocks and Twelf directives to be defined
to be paths (which must describe equivalent blocks and Twelf directives).
Module signatures S consist of literal sequences of declarations, instantia-
tions, and labels. Module signature instantiations N permit a component
of a module signature to be instantiated with expressions, block specifica-
tions, or other paths (describing blocks, directives, or structures). Top-level
signatures Σ contain shared declarations and named signatures.

3.3 Elaboration Data Structures

The elaboration of the above module language into Twelf requires several
auxiliary data structures and operations on them. The syntax of these data
structures is defined by the following grammar:

FINAL PROJECT REPORT DECEMBER 15, 2006

A Simple Module System for Twelf 13

Elaborated Module Sig. D ::= · | l⊲x : e. D | l⊲x : e =a e′. D
| block l⊲x. D | block l⊲x = bs. D
| l⊲%α. D

Signature Name Context ψ ::= · |ψ, l = (D, δ)
Module Signature Directory δ ::= · | δ, L⊲x | δ, L⊲ l | δ, l⊲δ
Mod. Sig. Directory Result r ::= l | x | δ
Signature Directory σ ::= · |σ, L⊲x |σ, l⊲σ′

Elaborated module signatures D are similar to Twelf signatures Σ, but
they differ in several ways. First, in D the name x in each declaration is
considered to be bound in the remainder of the module signature. Second,
the components of D are identified by labels l—the names x cannot be used
to identify components because they are subject to α-conversion. Finally,
D permits uninstantiated block declarations that can be defined by future
instantiations. Elaborated module signatures are flat, rather than hierarchi-
cal, which obviates the need for paths in expressions, block specifications,
and directives.
A signature name context ψ maps a label to an elaborated module sig-

nature and a directory. A directory captures the structure that a source lan-
guage had before elaboration by mapping source-language paths to com-
ponents of an elaborated module signature D. Specifically, δ maps a label
to a label indexing into D, to another directory representing a substructure,
or to names in the ambient context. The ability to map paths to names is
used to account for definitions that arise during elaboration, as we will see
below. We use a subsyntax σ of δ for directories whose leaves all map to
names; such a directories will be used to map paths into contexts Σ.
Elaboration relies on several auxiliary operations on these data struc-

tures whose behavior is simple to specify but whose definitions are some-
times complex. Consequently, we first specify these auxiliary operations in
the remainder and present the main elaboration rules. Section 3.5 contains
the definitions of these judgements.
The auxiliary judgements have the following forms:

• L # δ δ# δ′ The first judgement holdswhen l is underscore or when
L is an l is apart from the domain of δ. The second holds when all la-
bels in the domain of the first lie apart from the domain of the second.

• δ(l) = r δ(l.p) = r Look up a label or a path in a directory.

• [x← l]δ = δ′ and [l← x]δ = δ′ Replace identifiers in the range of δ.

The second judgement does not replace labels in paths; for example,

FINAL PROJECT REPORT DECEMBER 15, 2006

A Simple Module System for Twelf 14

[l← x]l⊲ l = l⊲x.

• D; δ ⇉s Σρ ; Σω ; σ where s = m | t is a tag distinguishing being

called from a module signature (m) from being called from a top-
level signature (t). This judgement splits D into two Twelf signatures,
Σρ consisting of LF and Twelf declarations that are known to succeed
(assuming that the input D is well-formed), and Σω consisting of sus-
pended Twelf directives that have not yet been run. The judgement
assumes that δ contains all and only paths referencing each compo-
nent ofD. It also returns a σwhere references intoD are replaced with
references into Σρ,Σω.

• (Σρ ; Σω ∼ D1)@(D2, δ2) = (D12, δ
′

2) Assuming Σρ,Σω contains one

declaration for each component of D1, this judgement appends D2

into the tail of D1, capturing the names in Σρ,Σω—i.e., the judgement
introduces binders for each component of D1 binding the names in
the signatures. The judgement also replaces references in δ2 to names
in Σρ,Σω with references to labels in D12.

• D|δ = D′; Σρ; Σω Assuming that δ references a contiguous fragment

of D, return that fragment as D′, along with contexts representing the
bindings in Dwhose scope D′ is in.

• σ / δ = β where β ::= · |β, x/l When the paths in σ are iden-

tical to the paths in δ that lead to labels, this judgement creates an
association between the name x at the end of a path in σ and the label
l at the end of the same path in δ.

• (D; δ)[β] = (D′; δ′) When the labels in β name a subsequence of D,

this judgement replaces the components of D labeled in β with the
associated name, also rerouting references in δ to those labels to the
name.

• freezes(Σ) = Σ′ Σ′ consists of a freeze directive for each type family

declared in Σ.

We also use the notation %α run for Twelf directives that are run while
elaborating module signatures and %αwait for directives that may appear
in signatures but are not run until a module is created at the top level (recall
the classification in Section 2.4).

FINAL PROJECT REPORT DECEMBER 15, 2006

A Simple Module System for Twelf 15

3.4 Main Elaboration Judgements

The main elaboration judgements have the following forms:

• σ ⊢ e ; e σ ⊢ bs ; bs σ ⊢ %α ; %α This judgement replaces paths
with names.

• Σρ ; Σω ;σ ⊢ψ D ; D ; δ Σρ ; Σω ;σ ⊢ψ S ; D ; δ These judgements

elaborate a module signature or module declarations to an elaborated
module signature and a directory of paths into it.

• Σρ; Σω ⊢ σ ≤ (D ; δ) |σ′ This judgement checks that σ is a subsigna-

ture of δ, in the sense that the paths in σ intoΣρ,Σω supply equivalent
components to all paths in δ into D or Σρ,Σω. It yields σ

′, which is ex-
actly those paths in σ used to satisfy components of δ.

• Σρ; Σω;σ ⊢ N : (D, δ)⇒ (D′, δ′) This judgement applies the instanti-

ation N to D and δ, yielding D′ and δ′.

• Σ ; § ; σ ; ψ This judgement elaborates a top-level signature.

σ ⊢ e ; e

σ(p) = x

σ ⊢ p ; x σ ⊢ x ; x σ ⊢ type ; type

σ ⊢ e ; e x #σ σ ⊢ e′ ; e′

σ ⊢ Π x:e. e′ ; Π x:e. e′

σ ⊢ e ; e x #σ σ ⊢ e′ ; e′

σ ⊢ λ x:e. e′ ; λ x:e. e′

σ ⊢ e ; e′ σ ⊢ e ; e′

σ ⊢ e e′ ; e e′

σ ⊢ e ; e σ ⊢ e′ ; e′

σ ⊢ e : e′ ; e : e′

σ ⊢ bs ; bs

xi, xj #σ σ ⊢ ei ; ei σ ⊢ ej ; ej

σ ⊢ some (xi : ei) block (xj : ej) ; some (xi : ei) block (xj : ej)

σ ⊢ %α ; %α We elide the definition of this judgement.

FINAL PROJECT REPORT DECEMBER 15, 2006

A Simple Module System for Twelf 16

Σρ ; Σω ;σ ⊢ψ D ; D ; δ

ψ is invariant throughout a derivation, so we elide it from the rules.

σ ⊢ e ; e Σρ ⊢ e class x fresh Σρ, x : e ; Σω ;σ, L⊲x ⊢ D ; D ; δ L # δ l′ fresh

Σρ ; Σω ;σ ⊢ (L : e. D) ; (l′⊲x : e. D) ; (L⊲ l′, [l′ ← x]δ)

We clarify two subtleties of this rule. First, the directory δ returned by the
inductive call may contain references to the variable x added to the signa-
ture; the substitution in the conclusion of the rule reroutes these references
to the appropriate component of the return value. Second, the check L # δ
ensures that all identifier labels in the signature are unique (underscore can
appear more than once).

σ ⊢ e ; e
σ ⊢ e′ ; e′

Σρ ⊢ e′ : e

x fresh
Σρ, x : e =a e′ ; Σω ;σ, L⊲x ⊢ D ; D ; δ

L # δ

l′ fresh

Σρ ; Σω ;σ ⊢ (L : e =a e′. D) ; (l′⊲x : e =a e′. D) ; (L⊲ l′, [l′ ← x]δ)

σ ⊢ bs ; bs
Σρ ⊢ bs blockspec

x fresh
Σρ, block x = bs ; Σω ;σ, l⊲x ⊢ D ; D ; δ

l # δ

l′ fresh

Σρ ; Σω ;σ ⊢ (block l = bs. D) ; (block l′⊲x = bs. D) ; (l⊲ l′, [l′ ← x]δ)

σ ⊢ %α ; %α
%α run

Σρ ⊢ %α succeeds

x fresh
Σρ, x :%α ; Σω ;σ, L⊲x ⊢ D ; D ; δ

l′ fresh

Σρ ; Σω ;σ ⊢ (L :%α. D) ; (l′⊲%α. D) ; (L⊲ l′, [x← l′]δ)

FINAL PROJECT REPORT DECEMBER 15, 2006

A Simple Module System for Twelf 17

σ ⊢ %α ; %α %αwait x fresh Σρ ; Σω, x : %α ;σ, L⊲x ⊢ D ; D ; δ l′ fresh

Σρ ; Σω ;σ ⊢ (L : %α. D) ; (l′⊲%α. D) ; (L⊲ l′, [x← l′]δ)

Σρ ; Σω ;σ ⊢ S1 ; D1 ; δ1
D1; δ1 ⇉m Σρ1 ; Σω1 ; σ1

Σρ,Σρ1 ; Σω,Σω1 ;σ, l⊲σ1 ⊢ D2 ; D2 ; δ2
l # δ2

(Σρ1 ; Σω1 ∼ D1)@(D2, δ2) = (D12, δ
′

2)

Σρ ; Σω ;σ ⊢ (l : S1. D2) ; D12 ; (l⊲δ1, δ
′

2)

The following rule exemplifies why we permit references into the ambi-
ent context in δ: this mechanism is used to resolve the defined substructure.
Note that D2 from the inductive call is returned directly.

Σρ ; Σω ;σ ⊢ S1 ; D1 ; δ1

σ(p) = σ1

Σρ; Σω ⊢ σ1 ≤ (D1 ; δ1) |σ
′

1

Σρ ; Σω ;σ, l⊲σ′1 ⊢ D2 ; D2 ; δ2
l # δ2

Σρ ; Σω ;σ ⊢ (l :S1 = p1. D2) ; D2 ; (l⊲σ′1, δ2)

σ(p) = σ1 Σρ ; Σω ;σ, σ1 ⊢ D ; D ; δ σ1 # δ

Σρ ; Σω ;σ ⊢ (open p. D) ; D ; (σ1, δ)

Σρ ; Σω ;σ ⊢ S1 ; D1 ; δ1
D1; δ1 ⇉m Σρ1 ; Σω1 ; σ1

Σρ,Σρ1 ; Σω,Σω1 ;σ, σ1 ⊢ D2 ; D2 ; δ2
δ1 # δ2

(Σρ1 ; Σω1 ∼ D1)@(D2, δ2) = (D12, δ
′

2)

Σρ ; Σω ;σ ⊢ (include S1. D2) ; D12 ; (δ1, δ
′

2)

x fresh Σρ, block x = some (·) block (·) ; Σω ;σ, l⊲x ⊢ D ; D ; δ l # δ l′ fresh

Σρ ; Σω ;σ ⊢ (block l. D) ; (block l′⊲x. D) ; (l⊲ l′, [l′ ← x]δ)

FINAL PROJECT REPORT DECEMBER 15, 2006

A Simple Module System for Twelf 18

σ(p) = x block x = bs in Σρ Σρ ; Σω ;σ, l⊲x ⊢ D ; D ; δ

Σρ ; Σω ;σ ⊢ (block l = p. D) ; D ; (l⊲x, δ)

σ ⊢ %α′
; %α′

σ(p) = x

x : %α in Σρ,Σω

Σρ ⊢ %α ≡ %α′ dir

Σρ ; Σω ;σ, l⊲x ⊢ D ; D ; δ

Σρ ; Σω ;σ ⊢ (l :%α′ = p. D) ; D ; (l⊲x, δ)

Σρ ; Σω ;σ ⊢ψ S ; D ; δ

Σρ ; Σω ;σ ⊢ψ D ; D ; δ

Σρ ; Σω ;σ ⊢ψ sig D end ; D ; δ

Σρ ; Σω ;σ ⊢ψ S ; D ; δ Σρ; Σω;σ ⊢ N : (D, δ)⇒ (D′, δ′)

Σρ ; Σω ;σ ⊢ψ Swhere N ; D′ ; δ′

l = (D, δ) in ψ

Σρ ; Σω ;σ ⊢ψ l ; D ; δ

Σρ; Σω ⊢ σ ≤ (D ; δ) |D′;σ′ Inductively, this judgement returns leftover

declarations D not matched by paths in σ as D′. In the rules, we elide
Σρ and Σω because they are invariant. The rules assume that the labels
in the range of δ are exactly the components of D and that a depth-first
traversal of δ finds these labels in the same order they occur in D. In the
definitions of other judgements, we write Σρ; Σω ⊢ σ ≤ (D ; δ) |σ′ to mean
σ ≤ (D ; δ) | ·;σ′, which is the condition under which an overall query suc-
ceeds.

Leftovers:

· ≤ (D ; δ) |D; ·

Dropped fields:

σ ≤ (· ; ·) | ·; ·

FINAL PROJECT REPORT DECEMBER 15, 2006

A Simple Module System for Twelf 19

The following rule permits passing over any declaration in σ. The rule
is written in a manner that introduces non-determinism, but in an imple-
mentation it should be complete to first check that the first declarations
matching, and then, if not, fall through to this rule. (Conjecture: whether
or not signature subsumption succeeds does not depend on which match-
ing declaration you choose.)

σ ≤ (D ; δ) |D′;σ′

L⊲ r, σ ≤ (D ; δ) |D′;σ′

References into Σmust agree:

Σρ ⊢ x ≡ y : σ ≤ (D ; δ) |D′;σ′

L⊲y, σ ≤ (D ; L⊲x, δ) |D′; L⊲y, σ′

block x = bs, block y = bs′ in Σρ Σρ ⊢ bs ≡ bs′ blockspec σ ≤ (D ; δ) |D′;σ′

L⊲y, σ ≤ (D ; L⊲x, δ) |D′; L⊲y, σ′

x :%α, y : %α′ in Σρ,Σω Σρ ⊢ %α ≡ %α′ dir σ ≤ (D ; δ) |D′;σ′

L⊲y, σ ≤ (D ; L⊲x, δ) |D′; L⊲y, σ′

For references into D, the corresponding component of Σ must suffice,
and the rules substitute its name in the inductive call to propagate the
equality:

σ1 ≤ (D ; δ1) |D1;σ
′

1 σ2 ≤ (D1 ; δ2) |D2;σ
′

2

l⊲σ1, σ2 ≤ (D ; l⊲δ1, δ2) |D2; l⊲σ
′

1, σ
′

2

y : e′ in Σρ Σρ ⊢ e′ ≡ e class σ ≤ ([y/x]D ; δ) |D′;σ′

L⊲y, σ ≤ (l′⊲x : e. D ; L⊲ l′, δ) |D′; L⊲y, σ′

y : e′ =a e′′ in Σρ Σρ ⊢ e′ ≡ e class σ ≤ ([y/x]D ; δ) |D′;σ′

L⊲y, σ ≤ (l′⊲x : e. D ; L⊲ l′, δ) |D′; L⊲y, σ′

y : e′′ =a′ e′′′ in Σρ Σρ ⊢ e ≡ e′′ class Σρ ⊢ e′ ≡ e′′′ : e σ ≤ ([y/x]D ; δ) |D′;σ′

L⊲y, σ ≤ (l′⊲x : e =a e′. D ; L⊲ l′, δ) |D′; L⊲y, σ′

FINAL PROJECT REPORT DECEMBER 15, 2006

A Simple Module System for Twelf 20

block y = bs in Σρ σ ≤ ([y/x]D ; δ) |D′;σ′

L⊲y, σ ≤ (block l′⊲x. D ; L⊲ l′, δ) |D′; L⊲y, σ′

block y = bs′ in Σρ Σρ ⊢ bs ≡ bs′ blockspec σ ≤ ([y/x]D ; δ) |D′;σ′

L⊲y, σ ≤ (block l′⊲x = bs. D ; L⊲ l′, δ) |D′; L⊲y, σ′

y : %α′ in Σρ,Σω Σρ ⊢ %α ≡ %α′ dir σ ≤ ([y/x]D ; δ) |D′;σ′

L⊲y, σ ≤ (l′⊲%α. D ; L⊲ l′, δ) |D′; L⊲y, σ′

Σρ; Σω;σ ⊢ N : (D, δ)⇒ (D′, δ′) In the rules, we elide Σρ,Σω, σ. Note that

the rules use the signature append judgement in a non-deterministic fash-
ion at an usual mode to extract a component of a signature.

σ ⊢ e ; e
δ(p) = l

(Σ′

ρ ; Σ′

ω ∼ D1)@(D2, ·) = (D, ·)

D2 = l⊲x : e′. D′

2

Σρ,Σ
′

ρ ⊢ e : e′

(Σ′

ρ ; Σ′

ω ∼ D1)@(l⊲x : e′ =%abbrev e. D′

2, ·) = (D′, ·)

p := e : (D, δ)⇒ (D′, δ)

σ ⊢ e ; e
δ(p) = l

(Σ′

ρ ; Σ′

ω ∼ D1)@(D2, ·) = (D, ·)

D2 = l⊲x : e′′ =a e′. D′

2

Σρ,Σ
′

ρ ⊢ e ≡ e′ : e′′

p := e : (D, δ)⇒ (D, δ)

σ ⊢ bs ; bs
δ(p) = l

(Σ′

ρ ; Σ′

ω ∼ D1)@(D2, ·) = (D, ·)

D2 = block l⊲x. D′

2

(Σ′

ρ ; Σ′

ω ∼ D1)@(block l⊲x = bs. D′

2, ·) = (D′, ·)

p := bs : (D, δ)⇒ (D′, δ)

FINAL PROJECT REPORT DECEMBER 15, 2006

A Simple Module System for Twelf 21

σ ⊢ bs ; bs
δ(p) = l

(Σ′

ρ ; Σ′

ω ∼ D1)@(D2, ·) = (D, ·)

D2 = block l⊲x = bs′. D′

2

Σρ,Σ
′

ρ ⊢ bs ≡ bs′ blockspec

p := bs : (D, δ)⇒ (D, δ)

The following rule covers path instantiations for blocks and directives:

σ(p′) = x′

δ(p) = l

D|p⊲ l = D′; Σ′

ρ; Σ
′

ω

Σρ,Σ
′

ρ; Σω,Σ
′

ω ⊢ p′⊲x′ ≤ (D′ ; p⊲ l) |σ′

(D; δ)[x′/l] = (D′′; δ′)

p := p′ : (D, δ)⇒ (D′′, δ′)

σ(p′) = σ′

δ(p) = δ′

D|δ′ = D′; Σ′

ρ; Σ
′

ω

Σρ,Σ
′

ρ; Σω,Σ
′

ω ⊢ σ
′ ≤ (D′ ; δ′) |σ′′

σ′′ / δ′ = β′

(D; δ)[β′] = (D′′; δ′′)

p := p′ : (D, δ)⇒ (D′′, δ′′)

Σ ; Σ ; σ ; ψ

·; · ; · ; ·

Σ ; Σ ; σ ; ψ Σ ; · ;σ ⊢ψ S ; D ; δ

Σ, l = S ; Σ ; σ ; ψ, l = (D, δ)

In the next two rules, the signature formation check handles freezing.

Σ ; Σ ; σ ; ψ σ ⊢ e ; e Σ ⊢ x : e sig x fresh

Σ, L : e ; Σ, x : e ; σ, L⊲x ; ψ

FINAL PROJECT REPORT DECEMBER 15, 2006

A Simple Module System for Twelf 22

Σ ; Σ ; σ ; ψ σ ⊢ e ; e σ ⊢ e′ ; e′ Σ ⊢ x : e =a e′ sig x fresh

Σ, L : e =a e′ ; Σ, x : e =a e′ ; σ, L⊲x ; ψ

Σ ; Σ ; σ ; ψ σ ⊢ bs ; bs Σ ⊢ bs blockspec x fresh

Σ, block l = bs ; Σ, block x = bs ; σ, l⊲x ; ψ

Σ ; Σ ; σ ; ψ σ ⊢ %α ; %α Σ ⊢ %α succeeds x fresh

Σ, L : %α ; Σ, x : %α ; σ, L⊲x ; ψ

Σ ; Σ ; σ ; ψ

Σ ; · ;σ ⊢ψ S ; D ; δ

D; δ ⇉t Σρ ; Σω ; σ′

freezes(Σρ) = Σf

Σ ⊢ Σρ,Σω,Σf sig

Σ, l : S ; Σ,Σρ,Σω,Σf ; σ, σ′ ; ψ

Σρ must be checked here, rather than assumed to be well-formed, to catch
freezing violations. In Section 5, we discuss methods of catching these vio-
lations sooner.

Σ ; Σ ; σ ; ψ Σ ; · ;σ ⊢ψ S ; D ; δ σ(p) = σ′ Σ; · ⊢ σ′ ≤ (D ; δ) |σ′′

Σ, l : S = p ; Σ ; σ, l⊲σ′′ ; ψ

Σ ; Σ ; σ ; ψ σ(p) = σ′

Σ, open p ; Σ ; σ, σ′ ; ψ

3.5 Definitions of Auxiliary Judgements

We now present the definitions of the auxiliary judgements. The reader
may wish to recall the informal descriptions of these judgements in Sec-
tion 3.3.

l # δ δ# δ′

δ l # ·

l 6= L

l # δ, L⊲ r

We elide the definition of the second judgement.

FINAL PROJECT REPORT DECEMBER 15, 2006

A Simple Module System for Twelf 23

δ(l) = r

δ, l⊲ r(l) = r

δ(l) = r L′ 6= l

δ, L′
⊲ r′(l) = r

δ(l.p) = r

δ(l) = r

δ(l) = r

δ(l) = δ′ δ′(p) = r

δ(l.p) = r

[x← l]δ = δ′

[x← l]δ = δ′

[x← l]δ, L⊲x = δ′, L⊲ l

x 6= y [x← l]δ = δ′

[x← l]δ, L⊲y = δ′, L⊲y

[x← l]δ = δ′

[x← l]δ, L⊲ l′ = δ′, L⊲ l′

[x← l]δ1 = δ′1 [x← l]δ2 = δ′2

[x← l]δ1, L⊲δ2 = δ′1, L⊲δ′2

[l← x]δ = δ′

[l← x]δ = δ′

[l← x]δ, L⊲ l = δ′, L⊲x

l′ 6= l [l′ ← x]δ = δ′

[l← x]δ, L⊲ l′ = δ′, L⊲ l′

[l← x]δ = δ′

[l← x]δ, L⊲y = δ′, L⊲y

[l← x]δ1 = δ′1 [l← x]δ2 = δ′2

[l← x]δ1, L⊲δ2 = δ′1, L⊲δ′2

p⊲ r = δ

l⊲ r = l⊲ r

p⊲ r = δ

l.p⊲ r = l⊲δ

D; δ ⇉s Σρ ; Σω ; σ where s = m | t is a tag distinguishing being called

from a module signature (m) from being called from a top-level signature
(t).

·;σ ⇉s · ; · ; σ

x fresh D; [l← x]δ ⇉s Σρ ; Σω ; σ

l⊲x : e. D; δ ⇉s x : e,Σρ ; Σω ; σ

FINAL PROJECT REPORT DECEMBER 15, 2006

A Simple Module System for Twelf 24

x fresh D; [l← x]δ ⇉s Σρ ; Σω ; σ

l⊲x : e =a e′. D; δ ⇉s x : e =a e′,Σρ ; Σω ; σ

The following rule only fires when called from a module signature; at
the top level, we do not permit undefined blocks.

x fresh D; [l← x]δ ⇉m Σρ ; Σω ; σ

block l⊲x. D; δ ⇉m block x = some (·) block (·),Σρ ; Σω ; σ

x fresh D; [l← x]δ ⇉s Σρ ; Σω ; σ

block l⊲x = bs. D; δ ⇉s block x = bs,Σρ ; Σω ; σ

x fresh %α run D; [l← x]δ ⇉s Σρ ; Σω ; σ

l⊲%α. D; δ ⇉s x :%α,Σρ ; Σω ; σ

x fresh %αwait D; [l← x]δ ⇉s Σρ ; Σω ; σ

l⊲%α. D; δ ⇉s Σρ ; x : %α,Σω ; σ

(Σρ ; Σω ∼ D1)@(D2, δ2) = (D12, δ
′

2)

(· ; · ∼ ·)@(D2, δ2) = (D2, δ2)

(Σρ ; Σω ∼ D1)@(D2, δ2) = (D12, δ
′

2)

(x : e,Σρ ; Σω ∼ l⊲x : e. D1)@(D2, δ2) = (l⊲x : e. D12, [x← l]δ′2)

(Σρ ; Σω ∼ D1)@(D2, δ2) = (D12, δ
′

2)

(x : e =a e′,Σρ ; Σω ∼ l⊲x : e =a e′. D1)@(D2, δ2) = (l⊲x : e =a e′. D12, [x← l]δ′2)

(Σρ ; Σω ∼ D1)@(D2, δ2) = (D12, δ
′

2)

(block x = some (·) block (·),Σρ ; Σω ∼ block l⊲x. D1)@(D2, δ2) = (block l⊲x. D12, [x← l]δ′2)

FINAL PROJECT REPORT DECEMBER 15, 2006

A Simple Module System for Twelf 25

(Σρ ; Σω ∼ D1)@(D2, δ2) = (D12, δ
′

2)

(block x = bs,Σρ ; Σω ∼ block l⊲x = bs. D1)@(D2, δ2) = (block l⊲x = bs. D12, [x← l]δ′2)

(Σρ ; Σω ∼ D1)@(D2, δ2) = (D12, δ
′

2)

(x :%α,Σρ ; Σω ∼ l⊲%α. D1)@(D2, δ2) = (l⊲%α. D12, [x← l]δ′2)

(Σρ ; Σω ∼ D1)@(D2, δ2) = (D12, δ
′

2)

(Σρ ; x : %α,Σω ∼ l⊲%α. D1)@(D2, δ2) = (l⊲%α. D12, [x← l]δ′2)

firstlab(δ) = l

firstlab(L⊲ l, δ) = l

firstlab(δ) = l

firstlab(L⊲x, δ) = l

firstlab(δ) = l

firstlab(L⊲δ, δ′) = l

firstlab(δ′) = l

firstlab(L⊲σ, δ′) = l

lastlab(δ) = l

lastlab(δ, L⊲ l) = l

lastlab(δ) = l

lastlab(δ, L⊲x) = l

lastlab(δ) = l

lastlab(δ′, L⊲δ) = l

lastlab(δ′) = l

lastlab(δ′, L⊲σ) = l

D|δ = D′; Σρ; Σω

firstlab(δ) = l lastlab(δ) = l′

(Σρ ; Σω ∼ D1)@(D23, ·) = (D, ·)

D23 = l⊲d. D′

(Σ′

ρ ; Σ′

ω ∼ D2)@(D3, ·) = (D23, ·)

D2 = . . . l′⊲d′. ·

D|δ = D2; Σρ; Σω

FINAL PROJECT REPORT DECEMBER 15, 2006

A Simple Module System for Twelf 26

D|σ = ·; ·; ·

σ / δ = β where β ::= · |β, x/l

· / · = ·

σ / δ = β

σ / L⊲x, δ = β

σ / δ = β

L⊲x, σ / L⊲ l, δ = x/l, β

σ / δ = β σ′ / δ′ = β′

l⊲σ, σ′ / l⊲δ, δ′ = β, β′

(D; δ)[β] = (D′; δ′)

In the rules, we abuse notation by abstracting the l ⊲ x part of the first
component of a declaration D; for declarations that don’t bind a variable
(directives), assume a fresh x.

(D; δ)[·] = (D; δ)

l 6= l′ (D; δ)[y/l′, β] = (D′; δ′)

(l⊲x. D; δ)[y/l′, β] = (l⊲x. D′; δ′)

([y/x]D; [l← y]δ)[β] = (D′; δ′)

(l⊲x. D; δ)[y/l, β] = (D′; δ′)

freezes(Σ) = Σ′

freezes(·) = ·

Σ, x : e ⊢ x famconst freezes(Σ) = Σ′ y fresh

freezes(Σ, x : e) = Σ′, y : freeze x

Σ, x : e ⊢ x famconst freezes(Σ) = Σ′ y fresh

freezes(Σ, x : e =a e′) = Σ′, y : freeze x

not (Σ, x : e ⊢ x famconst) freezes(Σ) = Σ′

freezes(Σ, x : e) = Σ′

FINAL PROJECT REPORT DECEMBER 15, 2006

A Simple Module System for Twelf 27

not (Σ, x : e ⊢ x famconst) freezes(Σ) = Σ′

freezes(Σ, x : e =a e′) = Σ′

freezes(Σ) = Σ′

freezes(Σ, block x = bs) = Σ′

freezes(Σ) = Σ′

freezes(Σ, x :%α) = Σ′

4 Implementation

We have a partial implementation of the module system presented in the
previous section. Although time limitations, technical issues interfacing
with Twelf, and the demands of programming a moving target prevented
us from completing the application, our experiences so far lead us to be-
lieve our formalism lends itself to a clean and understandable implemen-
tation. Our implementation interprets the judgments used in the elabora-
tion as appropriately moded algorithms. Because the elaborative semantics
have been rigorously defined in terms of inference rules, much of the code
base is a straightforward transcription of the paper semantics.

The technical challenge that arose during our implementation stems
from the fact that the definition of elaboration assumes that Twelf provides
certain judgments about Twelf terms and directives. In our original pro-
posal, our naive plan was to witness such properties by generating equiv-
alent Twelf programs and running them through Twelf. However, there
are some judgments such as Σ ⊢ bs ≡ bs′ blockspec for which it is not clear
how to generate a witnessing Twelf program. The correct way to proceed is
to interface with the Twelf implementation in order to write functions that
witness the desired judgments. In order to do so, we must first answer un-
resolved technical questions as to how we would reconcile the functional
view of Twelf implied by our semantics with the treatment of state in the
actual Twelf implementation. Specifically, the order in which we check
judgments under particular signatures does not necessarily align with how
Twelf’s state would evolve as we make our checks. To ensure correct be-
havior, we would need some mechanism for rolling back or swapping the
execution state of the Twelf implementation.

FINAL PROJECT REPORT DECEMBER 15, 2006

A Simple Module System for Twelf 28

s : type.

MOD = %sig a : s. %end.

Mod1 : MOD. % OK

%freeze s.

Mod4 : MOD. % NOT ALLOWED

Figure 7: Freezing and top-level families

5 Future Work and Conclusion

Though we believe that we have arrived at a reasonable checkpoint in the
design of themodule system, there are several extensions necessary to com-
plete the project.
First, we have not yet rigorously proved any properties of the elabora-

tion judgements. One desirable property is that the top-level judgement
Σ ; Σ ; σ ; ψ produces a valid Twelf signature Σ. We intend to define the
judgement Σ ⊢ Σ′ sig in terms of the other Twelf judgements and verify
that this invariant holds. Additionally, there are several internal invariants
of the elaboration rules that could be verified. For example, the rules of-
ten consider a pair (D, δ) such that the labels in the range of δ are exactly
those of the components of D. Though we used such invariants to guide
our design, we have not yet formally stated and proved them.
Second, our elaboration judgements catch freezing violations relatively

late. Specifically, as we noted in the definition of the judgement Σ ;

Σ ; σ ; ψ, the rule for top-level module declarations must check the sig-
nature Σρ to ensure that it is well-formed. It would be preferable if this
signature, which consists only of LF declarations and Twelf directives that
are run while processing module signatures, were guaranteed to be well-
formed by the elaboration. Indeed, we conjecture that the rules main-
tain this invariant for well-formedness in the LF sense (classifiers are well-
formed; definands are of the appropriate type or kind). However, these
signatures may trigger a freezing violation. We intend to revise the elab-
oration rules so that freezing violations are caught earlier. This extension
will make it easier to state a precise invariant on the signatures Σρ passed
to the Twelf judgements during elaboration of module signatures.
A related issue concerns top-level family definitions: should it be per-

missible for constants in a module to extend top-level families? We con-
jecture that it should not, because allowing such extensions would interact

FINAL PROJECT REPORT DECEMBER 15, 2006

A Simple Module System for Twelf 29

badly with catching freezing violations early. Specifically, it would be pos-
sible to define a top-level family s, then name a signature extending s, and
then freeze s, which would invalidate the well-formedness of the named
signature—later instantiations of that signature would cause a freezing vi-
olation. Figure 7 contains an example of such a scenario.

Fourth, in future work, it would be possible to extend the notion of sig-
nature matching presented here. We believe that the judgement Σρ; Σω ⊢
σ ≤ (D ; δ) |σ’ defines a useful notion of signature subsumption, where
subsignatures may refine declarations with definitions and add additional
fields. However, richer notions are possible: for example, we may consider
allowing permuted fields (subset rather than subsequence) and implicit in-
stantiation of Twelf’s implicit Π-type and -kind parameters. As long as
the supersignature δ does not contain any underscore fields, coercions wit-
nessing these additional subsignature relationships can be written in the
language by writing a module realizing δ in terms of σ using definitions.
Underscore components are problematic because the programmer cannot
refer to them in definitions. We do not yet know whether these limitations
are problematic in practice.

Finally, once we have a working prototype, we will be able to write
more involved examples and assess the design of the module language em-
pirically.

In this report, we have presented the primary deliverable of our project
proposal, the formal elaborative semantics of a module system for Twelf.
Additionally, we havemade significant progress toward a prototype imple-
mentation. In future work, we intend to pursue our other proposed goals,
a complete prototype, a library of examples for demonstrating and evalu-
ating the module system, and a real implementation in Twelf.

References

Andrew W. Appel. Foundational proof-carrying code. In LICS ’01:
Proceedings of the 16th Annual IEEE Symposium on Logic in Computer
Science, page 247, Washington, DC, 2001. IEEE Computer Society.

Coq Development Team. The Coq proof assistant reference manual,
2006.

Karl Crary. Toward a foundational typed assembly language. In Thir-
tieth ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 198–212, New Orleans, Louisiana, January 2003.

FINAL PROJECT REPORT DECEMBER 15, 2006

A Simple Module System for Twelf 30

Rémy Haemmerlé and François Fages. Modules for prolog revisited.
In International Conference on Logic Programming, pages 41–55, Seattle,
WA, 2006.

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for
defining logics. Journal of the Association for Computing Machinery, 40
(1), 1993.

Robert Harper and Frank Pfenning. A module system for a program-
ming language based on the LF logical framework. Journal of Logic and
Computation, 8(1):5–31, 1998.

Florian Kammüller. Module reasoning in Isabelle. In David A.
McAllester, editor, International Conference on Automated Deduction,
volume 1831 of Lecture Notes in Computer Science, pages 99–114, Pitts-
burgh, PA, 2000. Springer-Verlag.

Florian Kammüller, Markus Wenzel, and Lawrence Paulson. Locales:
A sectioning concept for Isabelle. In International Conference on Theorem
Proving in Higher-Order Logics, pages 149 – 166, Nice, France, 1999.
Springer-Verlag.

Daniel K. Lee, Karl Crary, and Robert Harper. Towards a mechanized
metatheory of Standard ML. In ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, Nice, France, 2007.

Dale Miller. A proposal for modules in Lambda-Prolog. In ELP ’93:
Proceedings of the 4th International Workshop on Extensions of Logic Pro-
gramming, pages 206–221, St. Andrews, UK, 1994. Springer-Verlag.
ISBN 3-540-58025-5.

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Is-
abelle/HOL — A Proof Assistant for Higher-Order Logic, volume 2283 of
Lecture Notes in Computer Science. Springer, 2002.

Frank Pfenning. Elf: A language for logic definition and verifiedmeta-
programming. In IEEE Symposium on Logic in Computer Science, pages
312–322, Pacific Grove, CA, 1989.

Frank Pfenning and Carsten Schürmann. System description: Twelf
- a meta-logical framework for deductive systems. In Harald
Ganzinger, editor, International Conference on Automated Deduction,
pages 202–206, 1999.

FINAL PROJECT REPORT DECEMBER 15, 2006

