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Dependent Types

• int

int (2)

• 2 : int

2 : int (2)

• list (string)

list(string)(10)

• cons : τ → list (τ) → list (τ)

cons : Π i : int. τ → list(τ)(i) → list(τ)(i + 1)

1



Dependent Types are Useful

• Express interesting properties

• Bake reasoning into the code

• Serve as machine-checked documentation

• Enable richer interfaces at module boundaries

• Obviate some dynamic checks
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Dependent Types are Tricky

• No phase distinction

• int (fix λ i : int. i)

int (print “hello”; 4)

• Type checking depends on term equivalence:
undecidable for a sufficiently powerful language

Some languages address these issues
[Augustsson; Ou, Tan, Mandelbaum, Walker]

Is there another way out?

3



Index Domains Solve these Problems

Xi and Pfenning’s realization:

instead of 2 : int (2),
2 : int (s (s z))

. . .4



Index Domains Solve these Problems

Xi and Pfenning’s realization:

instead of 2 : int (2),
2 : int (s (s z))

• Types depend on static proxies for run-time data
(proxies are drawn from index domains)

. . .4



Index Domains Solve these Problems

Xi and Pfenning’s realization:

instead of 2 : int (2),
2 : int (s (s z))

• Types depend on static proxies for run-time data
(proxies are drawn from index domains)

• Indices are pure

. . .4



Index Domains Solve these Problems

Xi and Pfenning’s realization:

instead of 2 : int (2),
2 : int (s (s z))

• Types depend on static proxies for run-time data
(proxies are drawn from index domains)

• Indices are pure

• Constraint solver decides relationships between
indices

4



DML Example

append : Π i, j :: I. list(τ)(i) × list(τ)(j) → list(τ)(plus i j)
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DML Example

append : Π i, j :: I. list(τ)(i) × list(τ)(j) → list(τ)(plus i j)
zip : Π i :: I. list(τ1)(i) × list(τ2)(i) → list(τ1 × τ2)(i)

zipApp :
Π i, j :: I. list(τ)(i) × list(τ)(j) → list(τ × τ)(plus i j)

fun zipApp (lst1, lst2) =

zip (append (lst1, lst2), append (lst2, lst1))

Why does this type check?
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Type Checking in DML

Π i, j :: I. list(τ)(i) × list(τ)(j) → list(τ × τ)(plus i j)

fun zipApp (lst1, lst2) =

zip (append (lst1, lst2), append (lst2, lst1))

• Synthesize obvious type list(τ)(plus j i)

• Observe that it must have type list(τ)(plus i j)

• Generate constraint ∀ i, j :: I. plus i j = plus j i

• Constraint solver (presumably) OKs

• Replace equal indices

6



DML Subset Sorts

Subset sorts require/assert the truth of a proposition:

nth : Π i, j :: I | i < j. list(τ)(j) → int (i) → τ

filter : Π i :: I. (τ → 2) → list(τ)(i) →

Σ j :: I | j < i. list(τ)(j)

These propositions about indices are checked/assumed
by the constraint solver

7



DML(C) Language Schema

Different implementations use different index domains:

• Xi’s DML has integer indices with linear integer
constraints

• Another of Xi’s uses finite sets with a constraint
solver based on model checking

• Sarkar’s language has LF terms as indices with a
constraint solver based on Twelf

8



Problems with DML(C)

• Language designer chooses the constraint domain

• Particular constraint solver is part of the language
specification
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Our Goal Language

• Programmer specifies the index domains
appropriate to her program

• Constraint solver is just library code
that helps her prove properties
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Our Goal Language

• Programmer specifies the index domains
appropriate to her program

• Constraint solver is just library code
that helps her prove properties

Verifying interesting properties must be practical
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Key Design Issues

1. Indices as static data

2. Notions of equality

3. Proofs and propositions

4. Using proofs in run-time terms

11



Key Design Issues

1. Indices as static data

2. Notions of equality

3. Proofs and propositions

4. Using proofs in run-time terms

12



Two Levels

• Types (τ ) classify terms (e)

• Kinds (κ) classify constructors (σ)

Constructors of kind T are types

13



Basic Expressions

κ ::= T

σ, τ ::= τ1 → τ2 | τ1 × τ2 | τ1 + τ2 | unit | void

e ::= x |λ x : τ. e | e1 e2 | fix e

| (e1, e2) | fst e | snd e

| inlτ2 e | inrτ1 e

| case e of (inl x1⇒ e1 | inr x2⇒ e2)

| () | abortτ e

14



Static Semantics

Separate contexts so phase distinction is
as clear as in ML:

Γ ::= · |Γ, x : τ

∆ ::= · |∆, u :: κ

Basic judgements:

• ∆ ` κ kind

• ∆ ` σ :: κ

• ∆ ; Γ ` e : τ

15



Index Domains are Kinds

Indices are static proxies for run-time data:

• Indices are constructors

• An index domain is a kind

16



Index Domains are Kinds

κ ::= T | I

σ, τ, ι ::= . . .

| int (ι) | list(τ)(ι)

| z | s ι

e ::= . . . | n | e1 + e2 | cons e1 e2 | . . .

17



Kinding of Indices and Types

∆ ` z :: I
∆ ` ι :: I

∆ ` s ι :: I

∆ ` ι :: I
∆ ` int (ι) :: T

∆ ` τ :: T ∆ ` ι :: I
∆ ` list(τ)(ι) :: T

18



Primitives have Index-Aware Types

∆ ; Γ ` n : int (sn z)

∆ ; Γ ` e1 : int (ι1) ∆ ; Γ ` e2 : int (ι2)

∆ ; Γ ` e1 + e2 : int (plus ι1 ι2)

∆ ; Γ ` e1 : τ ∆ ; Γ ` e2 : list(τ)(ι)

∆ ; Γ ` cons e1 e2 : list(τ)(s ι)
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Primitives have Index-Aware Types

∆ ; Γ ` n : int (sn z)

∆ ; Γ ` e1 : int (ι1) ∆ ; Γ ` e2 : int (ι2)

∆ ; Γ ` e1 + e2 : int (plus ι1 ι2)

∆ ; Γ ` e1 : τ ∆ ; Γ ` e2 : list(τ)(ι)

∆ ; Γ ` cons e1 e2 : list(τ)(s ι)

What’s plus?
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Recursion and Functions

κ ::= T | I |κ1 → κ2

σ, τ, ι ::= . . .

| NATrecc ι of (z⇒σ1 | s i′ with res⇒σ2)

| u |λc u :: κ. σ |σ1 σ2

Kind formation and kinding rules are standard

20



plus is Definable

plus ::= λc i, j :: I. NATrecc i of (z⇒ j | s i′ with res⇒ s res)

21



Dependent Types are Polymorphism

append : Π i, j :: I. list(τ)(i) × list(τ)(j) → list(τ)(plus i j)

Some terms require/produce indices

. . .22



Dependent Types are Polymorphism

append : Π i, j :: I. list(τ)(i) × list(τ)(j) → list(τ)(plus i j)

Some terms require/produce indices

σ, τ, ι ::= . . . | Π u :: κ. τ | Σ u :: κ. τ

e ::= . . . | Λ u :: κ. e | e[σ]

| pack (σ, e) as (Σ u :: κ. τ)

| unpack (u, x) = e1 in e2

22



Dependent Functions

Γ ; ∆, u :: κ ` e : τ

∆ ; Γ ` Λ u :: κ. e : Π u :: κ. τ

∆ ; Γ ` e : Π u :: κ. τ ∆ ` σ :: κ

∆ ; Γ ` e[σ] : [σ/u]τ

23



Dependent Pairs

∆ ` σ :: κ ∆ ; Γ ` e : [σ/u]τ

∆ ; Γ ` pack (σ, e) as (Σ u :: κ. τ) : Σ u :: κ. τ

∆ ; Γ ` e1 : Σ u :: κ1. τ1 Γ, x : τ1 ; ∆, u :: κ1 ` e2 : τ2 ∆ ` τ2 type

∆ ; Γ ` unpack (u, x) = e1 in e2 : τ2

24



Key Design Issues

1. Indices as static data

2. Notions of equality

3. Proofs and propositions

4. Using proofs in run-time terms
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Definitional Equality

• Given by some terminating decision procedure (often
reduction to normal form)

• Type system always allows the silent replacement of
definitional equals; e.g.,

∆ ; Γ ` e : τ ∆ ` τ ≡ τ ′ :: T

∆ ; Γ ` e : τ ′

26



Definitional Equality Judgements

• ∆ ` κ1 ≡ κ2 kind
congruent equivalence relation

• ∆ ` σ1 ≡ σ2 :: κ
congruent equivalence relation with β, rules for
primitive recursion, etc.

• None for terms

27



zipApp with Definitional Equality

Key constraint: ∀ i, j :: I. plus i j = plus j i

Does = mean ≡ ?
Is commutativity of addition part of definitional equality?
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zipApp with Definitional Equality

Key constraint: ∀ i, j :: I. plus i j = plus j i

Does = mean ≡ ?
Is commutativity of addition part of definitional equality?

Problems:

• What if we forget commutativity of multiplication?

• What about equalities at programmer-defined kinds?

Programmer must be allowed to add new equalities!

28
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Propositional Equality

Add separate notion of propositional equality (EQκ(σ1, σ2))
introduced by explicit proofs

We might make PF(EQκ(σ1, σ2)) a type with inhabitants

• refl s z : PF(EQI(s z, s z))

• Eq_ss : Π i, j :: I. PF(EQI(i, j)) → PF(EQI(s i, s j))

How can you use a PF(EQI(i, j))?
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Extensional Equality Elim Rule

Propositional equality induces definitional equality:

π : PF(EQκ(σ1, σ2))
σ1 ≡ σ2 :: κ
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Extensional Equality Elim Rule

Propositional equality induces definitional equality:

π : PF(EQκ(σ1, σ2))
σ1 ≡ σ2 :: κ

• Called the equality reflection or extensionality rule

• Studied in Martin-Löf’s extensional type theory

[Martin-Löf; Constable et al.; Hofmann]

• Makes type checking undecidable
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Intensional Equality Elim Rule

Explicitly use an equality proof to change the type of a
particular term:

∆ ; Γ ` e : int (ι1) ∆ ; Γ ` π : PF(EQI(ι1, ι2))

∆ ; Γ ` e because π : int (ι2)
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Intensional Equality Elim Rule

Explicitly use an equality proof to change the type of a
particular term:

∆ ; Γ ` e : τ ∆ ; Γ ` π : PF(EQT(τ, τ
′))

∆ ; Γ ` e because π : τ ′

• Studied in intensional Martin-Löf type theory

• Preserves decidability of type checking

• Some “extensional concepts” can be added

[Hofmann; Altenkirch]

31



Quiz

In DML, the type checker uses a constraint solver to
prove indices equal. Is this extensional or intensional?

. . .32



Quiz

In DML, the type checker uses a constraint solver to
prove indices equal. Is this extensional or intensional?

• Extensional: the constraint solver comes up with a
proof; this proof induces a definitional equality

• Intensional: definitional equality is given (in part) by
the constraint solver

. . .32



Quiz

In DML, the type checker uses a constraint solver to
prove indices equal. Is this extensional or intensional?

• Extensional: the constraint solver comes up with a
proof; this proof induces a definitional equality

• Intensional: definitional equality is given (in part) by
the constraint solver

In both views, definitional equality is more complicated
than simple expansion of definitions

32



Key Design Issues

1. Indices as static data

2. Notions of equality

3. Proofs and propositions

4. Using proofs in run-time terms
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Proofs of Type Equality in Haskell

Recently, proofs of type equality in Haskell have been
studied with applications to:

• type dynamic

[Baars, Swierstra; Cheney, Hinze; Weirich]

• polytypic programming

[Cheney, Hinze]

• tagless interpreters and metaprogramming

[Sheard, Pasalic; Peyton Jones]

34
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Proofs of Type Equality in Haskell

PF(EQT(τ1, τ2)) := Π f :: T → T. (f τ1) → (f τ2)

Reasonable intro rules definable:

refl : PF(EQT(τ, τ)) := Λ f :: T → T. λ x : (f τ). x

trans : PF(EQT(τ1, τ2)) → PF(EQT(τ2, τ3)) → PF(EQT(τ1, τ3)) :=

λ p1 : PF(EQT(τ1, τ2)). λ p2 : PF(EQT(τ2, τ3)).

Λ f :: T → T. λ x : (f τ1). p2[f] (p1[f] x)
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Proofs of Type Equality in Haskell

PF(EQT(τ1, τ2)) := Π f :: T → T. (f τ1) → (f τ2)

Casting elim definable, too:
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Proofs of Type Equality in Haskell

PF(EQT(τ1, τ2)) := Π f :: T → T. (f τ1) → (f τ2)

Casting elim definable, too:

∆ ; Γ ` e : τ ∆ ; Γ ` π : PF(EQT(τ, τ
′))

∆ ; Γ ` e because π : τ ′

e because p := p[λc u :: T. u] e
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• Many applications of λ x. x at run-time (unless you do
something clever with coercions)
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Proofs Terms are Problematic

• Many applications of λ x. x at run-time (unless you do
something clever with coercions)

• Proofs can be non-terminating or have other effects

• Conceptually, the proof’s purpose is to convince the
type checker of some fact; why should it exist at
run-time?

Make the proof terms static

37



Static Proofs

κ ::= . . . | PROP | PF(φ)

σ, ι, φ, π ::= . . .

| EQκ(σ1, σ2)

| refl σ | sym π | trans π12π23

| Eq_zz | Eq_ss | . . .

38
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∀ i, j :: I. plus i j = plus j i
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Are These Propositions Enough?

• Key zipApp constraint:
∀ i, j :: I. EQI(plus i j, plus j i)

What about the ∀?

• Binary search constraints ⇒ need hypothetical
reasoning

Need a more expressive logic

39



Intuitionistic Logic is a Good Option

• Economy of constructs

• Proving is nothing new

We could pick something else, though
(continuation-based classical logic)
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Intuitionistic Logic is a Good Option

• Economy of constructs

• Proving is nothing new

We could pick something else, though
(continuation-based classical logic)

How do we set it up?
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Propositions

Introduce richer set of propositions:

κ ::= . . . | PROP | . . .

σ, ι, φ, π ::= . . . | ∀ u :: κ. φ | ∃ u :: κ. φ |φ1 ⊃ φ2

|φ1 ∧ φ2 |φ1 ∨ φ2 | > |⊥

Restrict to FOL in formation rules

41



Proofs are Constructor-level Programs

κ ::= . . . | Πk u1 :: κ1. κ2 | Σk u1 :: κ1. κ2 |κ1 +k κ2

| UNIT | VOID

σ, π, φ, ι ::= . . . | u |λc u :: κ. σ |σ1 σ2

| packc (σ1, σ2) as Σk u :: κ1. κ2 | fstc σ | sndc σ

| inlκ2

c
σ | inrκ1

c
σ

| casec σ of (inl u1⇒σ1 | inr u2⇒σ2)

| unitc | abort
κ

c
σ

42



Proofs are Constructor-level Programs

∆ ` PF(∀ u :: κ. φ) ≡ Πk u :: κ. PF(φ) kind

∆ ` PF(∃ u :: κ. φ) ≡ Σk u :: κ. PF(φ) kind

∆ ` PF(φ1 ⊃ φ2) ≡ Πk _ :: PF(φ1). PF(φ2) kind

43



plus is Commutative

Recall plus ::=
λc i, j :: I. NATrecc i of (z⇒ j | s i′ with res⇒ s res)

We can give a PF(∀ i, j :: I. EQI(plus i j, plus j i))

• by induction (primitive recursion) on i

• uses lemmas

plus_rhz :: PF(∀ i, j :: I. EQI(plus i z, i))

plus_rhs :: PF(∀ i, j :: I. EQI(plus i (s j), s (plus i j)))

44



Key Design Issues

1. Indices as static data

2. Notions of equality

3. Proofs and propositions

4. Using proofs in run-time terms
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Given the PF(∀ i, j :: I. EQI(plus i j, plus j i)), can we
use because rule to finish off zipApp?
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Can We Finish Off zipApp?

Given the PF(∀ i, j :: I. EQI(plus i j, plus j i)), can we
use because rule to finish off zipApp?

∆ ; Γ ` e : τ ∆ ` π :: PF(EQT(τ, τ
′))

∆ ; Γ ` e because π : τ ′

• Need a
PF(∀ i, j :: I. EQT(list(τ)(plus i j), list(τ)(plus j i)))

• Seems like we need congruence constants
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Congruence Constants are Avoidable

The because rule can reach inside a type and substitute:

∆ ; Γ ` e : [σ1/u]τ ∆ ` π :: PF(EQκ(σ1, σ2))

∆ ; Γ ` e because πuκτ : [σ2/u]τ

47



Finishing Off zipApp

p :: PF(∀ i, j :: I. EQI(plus i j, plus j i))

FN i,j :: I =>
fn (lst1, lst2) =>

zip (append (lst1, lst2),
(append (lst2, lst1)
because (sym (p i j))
as u::I. (list t u))

: Π i, j :: I. list(τ)(i) × list(τ)(j) → list(τ × τ)(plus i j)
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certain propositions:
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Subset Sorts are Proof Quantification

Xi’s subset sorts restrict indices to those that satisfy
certain propositions:

nth : Π i, j :: I | LtI(i, j). list(τ)(j) → int (i) → τ

We handle this by quantification over proofs:

nth : Π i, j :: I. Π p :: PF(LtI(i, j)). list(τ)(j) → int (i) → τ
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Subset Sorts are Proof Quantification

filter : Π i :: I. (τ → 2) → list(τ)(i) →

Σ j :: I | LtI(j, i). list(τ)(j)

filter : Π i :: I. (τ → 2) → list(τ)(i) →

Σ j :: I. Σ p :: PF(LtI(j, i)). list(τ)(j)
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Run-Time Checks are Proof Quantification

< :

Π i, j :: I. int (i) × int (j) → Σ p :: PF(LtI(i, j)). unit

+ Σ p :: PF(GteI(i, j)). unit
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Key Design Issues

1. Indices as static data

2. Notions of equality

3. Proofs and propositions

4. Using proofs in run-time terms
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Interesting Questions

Phase 1: Redo DML(Int) with explicit proofs

• Operational semantics: type-passing?

• Safety proof and because

• Types are not parametric in indices

• Fancier recursion

• Programmer-specified logic

[Crary, Vanderwaart]
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Interesting Questions

Phase 2: Add constructs for declaring new kinds and
constructors

• For the kind I, we needed:
B constructors s and z

B primitive recursion

B inductive equality proof constructors Eq_ss . . .

• We also declared new propositions such as LtI(ι2, ι2)

How does this generalize?
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Interesting Questions

Phase 3: Reintroduce the constraint solvers as proof
search tools
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Programmer-Defined Index Domains

Thanks for listening!
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