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Abstract
A central method for analyzing the asymptotic complexity of a
functional program is to extract and then solve a recurrence that
expresses evaluation cost in terms of input size. The relevant notion
of input size is often specific to a datatype, with measures including
the length of a list, the maximum element in a list, and the height
of a tree. In this work, we give a formal account of the extraction
of cost and size recurrences from higher-order functional programs
over inductive datatypes. Our approach allows a wide range of
programmer-specified notions of size, and ensures that the extracted
recurrences correctly predict evaluation cost. To extract a recurrence
from a program, we first make costs explicit by applying a monadic
translation from the source language to a complexity language, and
then abstract datatype values as sizes. Size abstraction can be done
semantically, working in models of the complexity language, or
syntactically, by adding rules to a preorder judgement. We give
several different models of the complexity language, which support
different notions of size. Additionally, we prove by a logical relations
argument that recurrences extracted by this process are upper bounds
for evaluation cost; the proof is entirely syntactic and therefore
applies to all of the models we consider.

Categories and Subject Descriptors F.3.1 [Logics and meanings
of programs]: Specifying and verifying and reasoning about pro-
grams; F.3.2 [Logics and meanings of programs]: Semantics of
programming languages

General Terms Verification.

Keywords Semi-automatic complexity analysis.
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1. Introduction
The typical method for analyzing the asymptotic complexity of a
functional program is to extract a recurrence that relates the func-
tion’s running time to the size of the function’s input, and then
solve the recurrence to obtain a closed form and big-O bound. Au-
tomated complexity analysis (see the related work in Section 7)
provides helpful information to programmers, and could be par-
ticularly useful for giving feedback to students. In a setting with
higher-order functions and programmer-defined datatypes, automat-
ing the extract-and-solve method requires a generalization of the
standard theory of recurrences. This generalization must include
a notion of recurrence for higher-order functions such as map and
fold, as well as a general theory of what constitutes “the size of the
input” for programmer-defined datatypes.

One notion of recurrence for higher-order functions was devel-
oped in previous work by Danner and Royer (2009) and Danner et al.
(2013). Because the output of one function is the input to another, it
is necessary to extract from a function not only a recurrence for the
running time, but also a recurrence for the size of the output. These
can be packaged together as a single recurrence that, given the size
of the input, produces a pair consisting of the running time (called
the cost) and the size of the output (called the potential). Whereas
the former is the cost of executing the program to a value, the latter
determines the cost of using that value. This generalizes naturally to
higher-order functions: a recurrence for a higher-order function is
itself a higher-order function, which expresses the cost and potential
of the result in terms of a given recurrence for the cost and potential
of the argument function. The process of extracting recurrences can
thus be seen as a denotational semantics of the program, where a
function is interpreted as a function from input potential to cost and
output potential.

Building on this work, we give a formal account of the extraction
of recurrences from higher-order functional programs over inductive
datatypes, focusing how to soundly allow programmer-specified
sizes of datatypes. We show that under some mild conditions on
sizes, the cost predicted by an extracted recurrence is in fact an upper
bound on the number of steps the program takes to evaluate. The size
of a value can be taken to be (essentially) the value itself, in which
case one gets exact bounds but must reason about all the details of
program evaluation, or the size of a value can forget information
(e.g. abstracting a list as its length), in which case one gets weaker
bounds with more traditional reasoning.

We start from a call-by-value source language, defined in Sec-
tion 2, with strictly positive inductive datatype definitions (which
include lists and finitely and infinitely branching trees) Datatypes
are used via case-analysis and structural recursion (so the language
is terminating), but unlike in Danner et al. (2013), recursive calls are
only evaluated if necessary—for example, recurring on one branch
of a tree has different cost than recurring on both branches. The



cost of a program is defined by an operational cost semantics, an
evaluation relation annotated with costs. For simplicity, the cost
semantics measures only the number of function applications and re-
cursive calls made during evaluation, but our approach to extracting
recurrences generalizes to other cost models.

We extract a recurrence from such a program in two steps. First,
in Section 3, we make the cost of evaluating a program explicit, by
translating a source program e to a program ‖e‖ in a complexity
language. The complexity language has an additional type C for
costs, and the translation to the complexity language is a call-by-
value monadic translation into the writer monad C×− (Moggi 1991;
Wadler 1992). The translated program ‖e‖ returns an additional
result, which is the cost of running the original program e.

Second, we abstract values to sizes; we study both semantic and
syntactic approaches. In Section 4, we give a size-based semantics
of the complexity language, which relies on programmer-specified
size functions mapping each datatype to the natural numbers (or
some other preorder). Typical size functions include the length of a
list and the size or depth of a tree. The semantics satisfies a bounding
theorem (Theorem 7), which implies that the denotational cost given
by composing the source-to-complexity translation with the size-
based semantics is in fact an upper bound on the operational cost.
We show some examples that the recurrence for cost extracted by
this process is the expected one; later we also show that the results
in Danner et al. (2013) carry over.

Alternatively, the abstraction of values to sizes can be done
syntactically in the complexity language, by imposing a preorder
structure on the values of the datatype themselves. For example,
rather than mapping lists to numbers representing their lengths,
we can order the list values by rules including xs ≤ (x::xs) and
(x::xs) ≤ (y::xs). The second rule says that the elements of the
list are irrelevant, quotienting the lists down to natural numbers,
and the first generates the usual order on natural numbers. Formally,
we equip the complexity language with a judgement E ≤ E′ that
can be used to make such abstractions. In Section 5, we identify
properties of this judgement that are sufficient to prove a syntactic
bounding theorem (Theorem 12), which states that the operational
cost is bounded by the cost component of the complexity translation.
The key technical notion is a logical relation between the source and
complexity languages that extends the bounding relation of Danner
et al. (2013) to inductive types. This proof gives a bounding theorem
for any model of the complexity language that validates the rules for
≤. In Section 6, we show that these rules are valid in the size-based
semantics of Section 4 (thereby proving Theorem 7), and we discuss
several other models of the complexity language.

This gives a formal account of what it means to extract a
recurrence from higher-order programs on inductive data. We
leave an investigation of what it means to solve these higher-order
recurrences to future work. Danner et al. (2015) is a full version of
this paper.

2. Source Language with Inductive Data Types
The source language is a simply-typed λ-calculus with product
types, function types, suspensions, and strictly positive inductive
datatypes. Its syntax, typing, and operational semantics are given in
Figure 1. We bundle sums and inductive types together as datatypes,
rather than using separate + and µ types, because below we do not
want to consider sizes for the sum part separately. We assume a
top-level signature ψ consisting of datatype declarations of the form

datatype δ = Cδ0 of φC0 [δ] | . . . | Cδn−1 of φCn−1 [δ]

Each constructor’s argument type is specified by a strictly positive
functor φ. These include the identity functor (t), representing a recur-
sive occurrence of the datatype; constant functors (τ ), representing a
non-recursive argument; product functors (φ1 × φ2), representing a

pair of arguments; and constant exponentials (τ → φ), representing
an argument of function type. For example for τ list, the argu-
ment type for Nil is unit (constant functor), and the argument
type for Cons is τ × t (product of constant and recursive argu-
ments). We write φ[τ ] = φ[τ/t] for substitution for the single free
type variable t in φ. We sometimes abbreviate further by dropping
the type superscripts and writing datatype δ = C of φC and by
writing C rather than Ci to refer to one of the constructors of the
declaration. In the signature, each φC in each datatype declara-
tion must refer only to datatypes that are declared earlier in the
sequence, to avoid introducing general recursive datatypes (see the
full paper for the formal definition). We write C : (φ → δ) ∈ ψ
to mean that the signature ψ contains a datatype declaration of
the form datatype δ = . . . | C of φ[δ] | . . .. We generally elide
the signature from typing, but sometimes write γ `ψ e : τ to in-
clude it. The elimination rule for a datatype δ is structural recursion,
recδ(e, C 7→ x.eC). When φC = unit, we assume x /∈ fv(eC)
and write eC instead of x.eC .

Evaluation is call-by-value and products and datatypes are
strict. However, unfolding datatype recursors requires substituting
expressions (the recursor applied to the components of the value) for
the variables standing for the recursive calls—running the recursive
call first and substituting its value would require a function to make
all possible recursive calls. We handle this using suspensions: when
computing a τ by recursion, the result of a recursive call is given the
type susp τ . The values of type susp τ are delay(e) where e is an
expression of type τ ; the elimination form force forces evaluation.
When defining a recursive computation of result type τ , the branch
for a constructor C has access to a variable of type φC [δ× susp τ ],
which gives access both to the “predecessor” values of type δ and to
the recursive results. This supports both case-analysis and structural
recursion, and recursive calls are only computed if they are used.

For any strictly positive functor φ, the mapφ expression witnesses
functoriality, essentially lifting a function τ0 → τ1 to a function
φ[τ0] → φ[τ1]. It is used in the operational semantics for the
recursor to insert recursive calls at the right places in φ (Harper
(2013) provides an exposition). We will only need to lift maps
x : τ0.v : τ1 whose bodies are syntactic values (or variables), and
apply them to syntactic values (or variables), and we restrict map to
this special case to simplify its cost semantics.

The cost semantics in Figure 1 defines the relation e ↓n v, which
means that the expression e evaluates to the value v in n steps. Our
cost model charges only for the number of function applications and
recursive calls made by datatype recursors. This prevents constant-
time overheads from the encoding of datatypes using product and
suspension types from showing up in the extracted recurrences. It
is simple to adapt the denotational cost semantics below to other
operational cost semantics, such as one that charges for these steps,
or assigns different costs to different constructs.

Substitutions are defined as usual:

DEFINITION 1. We write θ for substitutions v1/x1, . . . , vn/xn, and
θ : γ to mean that Dom θ ⊆ Dom γ and ∅ ` θ(x) : γ(x) for all
x ∈ Dom θ. We define the application of a substitution θ to an
expression e as usual and denote it e[θ].

LEMMA 1. If x /∈ Dom θ, then e[θ, x/x][e1/x] = e[θ, e1/x].

For source cost expressions n, we write n ≤ n′ for the order
given by interpreting these cost expressions as natural numbers
(i.e. the free precongruence generated by the monoid equations for
(+, 0) and 0 ≤ 1). We have the following syntactic properties of
evaluation:

LEMMA 2 (Value Evaluation).

• If v ↓n v′ then n ≤ 0 and v = v′.



Types:

τ ::= unit | τ × τ | τ → τ | susp τ | δ
φ ::= t | τ | φ× φ | τ → φ

datatype δ = Cδ0 of φC0 [δ] | . . . | Cδn−1 of φCn−1 [δ]

Expressions:

v ::= x | 〈 〉 | 〈v, v〉 | λx.e | delay(e) | C v
e ::= x | 〈 〉 | 〈e, e〉 | split(e, x.x.e) | λx .e | e e

| delay(e) | force(e)
| Cδ e | recδ(e, C 7→ x.eC)
| mapφ(x.v, v) | let(e, x.e)

n ::= 0 | 1 | n+ n

Typing: γ ` e : τ .

γ ` e : τ

γ ` delay(e) : susp τ
γ ` e : susp τ
γ ` force(e) : τ

γ ` e : φC [δ]

γ ` Cδ e : δ

γ ` e : δ ∀C (γ, x : φC [δ × susp τ ] ` eC : τ)

γ ` recδ(e, C 7→ x.eC) : τ

γ, x : τ0 ` v1 : τ1 γ ` v0 : φ[τ0]

γ ` mapφ(x.v1, v0) : φ[τ1]

Operational semantics: e ↓n v.

delay(e) ↓0 delay(e)

e ↓n0 delay(e0) e0 ↓n1 v

force(e) ↓n0+n1 v

e ↓n v
Ce ↓n Cv

e ↓n0 C v0

mapφC (y.〈y, delay(rec(y, C 7→ x.eC))〉, v0) ↓n1 v1

eC [v1/x] ↓n2 v

rec(e, C 7→ x.eC) ↓1+n0+n1+n2 v

mapt(x.v, v0) ↓0 v[v0/x]
(t not free in τ )

mapτ (x.v, v0) ↓0 v0

mapφ0(x.v, v0) ↓n0 v′0 mapφ1(x.v, v1) ↓n1 v′1

mapφ0×φ1(x.v, 〈v0, v1〉) ↓n0+n1 〈v′0, v′1〉

mapτ→φ(x.v, λy.e) ↓0 λy. let(e, z.mapφ(x.v, z))

Figure 1: Source language syntax and typing and operational semantics. Standard typing rules for variables, product types, function types, and
let are omitted. In omitted operational rules, the costs are the sum of the costs of the subevaluations, except for e0 e1 , which adds 1.

• For all v, v ↓0 v.

LEMMA 3 (Totality of map). If γ ` mapφ(x.v1, v0) : φ[τ1] then
mapφ(x.v1, v0) ↓0 v for some v.

3. Making Costs Explicit
3.1 The Complexity Language
The complexity language will serve as a monadic metalanguage
(Moggi 1991) in which we make evaluation cost explicit. The syntax
and typing are given in Figure 2. The preorder judgement defined in
Section 5 will play a role analogous to an operational or equational
semantics for the complexity language.

Because we are not concerned with the evaluation steps of the
complexity language itself, we remove features of the source lan-
guage that were used to control evaluation costs. Product types are
eliminated by projections, rather than split. We allow substitution
of arbitrary expressions for variables, which is used in recursors for
datatypes. Consequently, suspensions are not necessary. We treat
mapΦ(x.E,E1) as an admissible rule (macro), defined by induction
on Φ:

Γ, x : T0 ` E1 : T1 Γ ` E0 : Φ[T0]

Γ ` mapΦ(x.E1, E0) : Φ[T1]

mapt(x.E,E0) := E[E0/x]

mapT (x.E,E0) := E0

mapΦ0×Φ1(x.E,E0) := 〈mapΦ0(x.E, π0E0),mapΦ1(x.E, π1E0)〉
mapT→Φ(x.E,E1) := λy.mapΦ(x.E,E1 y)

The type C represents some domain of costs. The term con-
structors for C say only that it is a monoid (+, 0) with a value 1
representing a single step. Costs can be interpreted in a variety of

ways—e.g. as natural numbers and as natural numbers with infinity
(Section 4).

Substitutions Θ in the complexity language are defined as usual,
and satisfy standard composition properties:

LEMMA 4.

• If x does not occur in Θ, thenE[Θ, x/x][E1/x] = E[Θ, E1/x].
• If x1, x2 do not occur in Θ, then E[E1/x1][E2/x2][Θ] =
E[Θ, E1[Θ]/x1, E2[Θ]/x2].

3.2 The Complexity Translation
Consider a higher-order function such as map on lists:

listmap = λ(f, xs). rec(xs,

Nil 7→ Nil
|Cons 7→ 〈y, 〈ys, r〉〉.Cons(f y, force(r)))

The cost of listmap(f, xs) depends on the sizes of each element
of xs, and the cost of evaluating f on elements of those sizes.
However, since listmap(f, xs) might itself be an argument to
another function (e.g. another listmap), we also need to predict
the sizes of the elements of listmap(f, xs), which depends on the
size of the output of f . Thus, to analyze listmap, we should be
given a recurrence for the cost and size of f(x) in terms of the size
of x, and need to produce a recurrence that gives the cost and size
of listmap(f, xs) in terms of the size of xs. We call the size of the
value of an expression that expression’s potential, because the size
of the value determines what future uses of that value will cost.

This discussion motivates a translation ‖·‖ from source language
terms to complexity language terms so that if e:τ , then ‖e‖:C×〈〈τ〉〉.
In the complexity language, we call an expression of type C× 〈〈τ〉〉
a complexity, an expression of type C a cost, and an expression



Types:

T ::= C | unit | ∆ | T × T | T → T
Φ ::= t | T | Φ× Φ | T → Φ

datatype ∆ = C∆
0 of ΦC0 [∆] | . . . | C∆

n−1 of ΦCn−1 [∆]

Expressions:

E ::= x | 0 | 1 | E + E |
〈 〉 | 〈E,E〉 | π0 E | π1 E | λx .E | E E
| C∆ E | rec∆(E,C 7→ x.EC)

Typing: Γ ` E : T .

Γ ` E : ΦC [∆]

Γ ` C∆ E : ∆

Γ ` E : ∆ ∀C (Γ, x : ΦC [∆× T ] ` EC : T )

Γ ` rec∆(E,C 7→ x.EC) : T

Figure 2: Complexity language types, expressions, and typing.
The typing rules are standard for unit, product, and arrow types. C has a binary operation + and elements 0 and 1.

of type 〈〈τ〉〉 a potential. We abbreviate C × 〈〈τ〉〉 by ‖τ‖. The
first component of ‖e‖ is the cost of evaluating e, and the second
component of ‖e‖ is the potential of e.

For example, listmap is a value, so its cost should be zero. On
the other hand, its potential should describe what future uses of
listmap will cost, in terms of the potentials of its arguments. For
the type of listmap (uncurried), the above discussion suggests

〈〈(τ → σ)× (τ list)→ σ list〉〉 :=
(〈〈τ〉〉 → C× 〈〈σ〉〉)× 〈〈τ list〉〉 → C× 〈〈σ list〉〉

For the argument function, we are provided a recurrence that maps
τ -potentials to costs and σ-potentials. For the argument list, we are
provided a τ list-potential. Using these, the potential of listmap
must give the cost for doing the whole map and give a σ list-
potential for the value. This illustrates how the potential of a higher-
order function is itself a higher-order function.

As discussed above, we stage the extraction of a recurrence, and
in the first phase, we do not abstract values as sizes (e.g. we do
not replace a list by its length). Because of this, the complexity
translation has a succinct description. For any monoid (C,+, 0),
the writer monad (Wadler 1992) C×− is a monad with

return(E) := (0, E)
E1 »= E2 := (π0(E1) + π0(E2(π1(E1))), π1(E2(π1(E1))))

The monad laws follow from the monoid laws for C. Thinking of
C as costs, these say that the cost of return(e) is zero, and that the
cost of bind is the sum of the cost of E1 and the cost of E2 on the
potential of E1. The complexity translation is then a call-by-value
monadic translation from the source language into the writer monad
in the complexity language, where source expressions that cost a
step have the “effect” of incrementing the cost component, using
the monad operation

incr(E : C) : C× unit := (E, 〈 〉)

We write this translation out explicitly in Figure 3. When E is
a complexity, we write Ec and Ep for π0 E and π1 E respectively
(for “cost” and “potential”). We will often need to “add cost” to
a complexity; when E1 is a cost and E2 a complexity, we write
E1 +c E2 for the complexity (E1 + (E2)c, (E2)p) (in monadic
notation, incr(E1) »E2). The type translation is extended pointwise
to contexts, so x : τ ∈ γ iff x : 〈〈τ〉〉 ∈ 〈〈γ〉〉—the translation is
call-by-value, so variables range over potentials, not complexities.
For example, ‖x‖ = (0, x), where the x on the left is a source
variable and the x on the right is a potential variable. Likewise we
assume that for every datatype δ in the source signature, we have a
corresponding datatype δ declared in the complexity language.

We note some basic facts about the translation: the type trans-
lation commutes with the application of a strictly positive functor,
which is used to show that the translation preserves types.

LEMMA 5 (Compositionality).

• ‖φ[τ ]‖ = ‖φ‖[〈〈τ〉〉]
• 〈〈φ[τ ]〉〉 = 〈〈φ〉〉[〈〈τ〉〉]

THEOREM 6. If γ `ψ e : τ , then ‖γ‖ `‖ψ‖ ‖e‖ : ‖τ‖.

4. A Size-Based Complexity Semantics
In the above translation, the potential of a value has just as much
information as that value itself. Next, we investigate how to abstract
values to sizes, such as replacing a list by its length. In this section,
we make this replacement by defining a size-based denotational
semantics of the complexity language.

We need to be able to treat potentials of inductively-defined
data in two different ways. On the one hand, potentials must reflect
intuitions about sizes. To that end, we will insist that potentials
be partial orders. On the other hand, to interpret rec expressions,
we must be able to distinguish the datatype constructor that a
potential represents. In other words, we need the potentials to also be
(something like) inductive data types. We will have our cake and eat
it too using an approach similar to the work on views (Wadler 1987).
As hinted above, we interpret each datatype ∆ in the complexity
language as a partial order J∆K. But we will also make use of the
sum type D∆ = JΦC0 [∆]K + · · ·+ JΦCn−1 [∆]K (representing the
unfolding of the datatype) and a function size∆ : D∆ → J∆K
(which represents the size of a constructor, in terms of the size of
the argument to the constructor). When ΦCi = t (i.e. the argument
to the constructor is a single recursive occurrence of the datatype),
size(inj i x) is intended to represent an upper bound on the size of
the values of the form C v, where v is a value of size at most x.
To define the semantics of rec∆(y, C 7→ x.EC), we consider all
values z ∈ D∆ such that size∆(z) ≤ y. We can distinguish
between such values to (recursively) compute the possible values of
the form EC [. . ./x], and then take a maximum over all such values.

For example, for the inductive definitions of nat and list
(where the list elements have type nat), suppose we want to construe
the size of a list to be the number of all nat and list constructors.
We implement this in the complexity semantics as

JnatK = Z+

Dnat = {∗}+ JnatK
sizenat(∗) = 1
sizenat(m) = 1 +m

JlistK = Z+

Dlist = {∗}+ (JnatK× JlistK)
size list(∗) = 1

size list((m,n)) = 1 +m+ n

where Z+ is the non-negative integers.



‖τ‖ = C× 〈〈τ〉〉
〈〈unit〉〉 = unit
〈〈σ × τ〉〉 = 〈〈σ〉〉 × 〈〈τ〉〉
〈〈σ→ τ〉〉 = 〈〈σ〉〉 → ‖τ‖
〈〈susp τ〉〉 = ‖τ‖

〈〈δ〉〉 = δ

‖φ‖ = C× 〈〈φ〉〉
〈〈t〉〉 = t
〈〈τ〉〉 = 〈〈τ〉〉

〈〈φ0 × φ1〉〉 = 〈〈φ0〉〉 × 〈〈φ1〉〉
〈〈τ → φ〉〉 = 〈〈τ〉〉 → ‖φ‖

〈〈ψ〉〉 has, for each datatype δ in ψ
datatype δ = Cδ0 of 〈〈φC0〉〉[δ], . . . , CδCn−1

of 〈〈φn−1〉〉[δ]

‖x‖ = 〈0, x〉
‖〈 〉‖ = 〈0, 〈 〉〉

‖〈e0, e1〉‖ = 〈‖e0‖c + ‖e1‖c, 〈‖e0‖p, ‖e1‖p〉〉
‖split(e0, x0.x1.e1)‖ = ‖e0‖c +c ‖e1‖[π0‖e0‖p/x0, π1‖e1‖p/x1]

‖λx.e‖ = 〈0, λx.e〉
‖e0 e1‖ = (1 + (e0)c + (e1)c) +c (e0)p(e1)p

‖delay(e)‖ = 〈0, ‖e‖〉
‖force(e)‖ = ‖e‖c +c ‖e‖p

‖Cδi e‖ = 〈‖e‖c, Cδi ‖e‖p〉

‖recδ(e, C 7→ x.eC)‖ = ‖e‖c +c rec
δ(‖e‖p, C 7→ x.1 +c ‖eC‖)

‖mapφ(x.v0, v1)‖ = 〈0,map〈〈φ〉〉(x.‖v0‖p, ‖v1‖p)〉
‖let(e0, x.e1)‖ = ‖e0‖c +c ‖e1‖[‖e0‖p/x]

Figure 3: Translation from source types and expressions to complexity types and expressions. Recall that ‖e‖c = π0‖e‖ and ‖e‖p = π1‖e‖.

We define the size-based complexity semantics as follows. The
base cases for an inductive definition of (ST ,≤T ) for every com-
plexity type T consist of well-founded partial orders (S∆,≤∆)
for every datatype ∆ in the signature, such that ≤∆ is closed
under arbitrary maximums (see below for a discussion). We de-
fine N∞ = N ∪ {∞}, where N is the natural numbers with the
usual order and addition. We extend the order and addition to∞
by n ≤N∞ ∞ and n + ∞ = ∞ + n = ∞ + ∞ = ∞ for
all n ∈ N. For products and functions we define Sunit = {∗}
and ST0×T1 = ST0 × ST1 and ST0→T1 = (ST1)S

T0 , with the
trivial, componentwise, and pointwise partial orders, respectively.
Complexity types are interpreted into this type structure by setting
JCK = N∞ and JT K = ST for each complexity type T .

Stating the conditions on programmer-defined size functions
requires some auxiliary notions. For datatype ∆ = C of ΦC , set
D∆ = JΦC0 [∆]K+· · ·+JΦCn−1 [∆]K, writing inj i : JΦCi [∆]K→
D∆ for the ith injection. Next, we define a function szΦ with
domain JΦ[∆]K (the semantic analogue of the argument type of
a datatype constructor). szΦ(a) is intended to be the maximum
of the values of type J∆K from which a is built using pairing and
function application. We want to define szΦ by induction on Φ,
computing the maximum at each step. To ignore values not of type
J∆K we assume an element ⊥ /∈ S∆ that serves as an identity for
∨; that is, we order S∆ ∪ {⊥} so that ⊥ < a for all a ∈ S∆. We
define szΦ : JΦ[∆]K→ S∆ ∪ {⊥} by induction on Φ as follows:

sz t(a) = a
szT (a) = ⊥
szΦ0×Φ1(a) = szΦ0(a) ∨ szΦ1(a)
szT→Φ(f) =

∨
a∈JT K sz

Φ(f(a))

The key input to the size-based semantics is programmer-
supplied size functions size∆ : D∆ → S∆ such that

szΦCi (a) <S∆∪{⊥} (size∆ ◦ inj i)(a)

size∆ represents the programmer’s notion of size for inductively-
defined values. The only condition, which is used to interpret the
recursor, is that the size of a value is strictly greater than the size of
any of its substructures of the same type. For example, this condition
permits interpreting the size of a list as its length or its total number
of constructors, and the size of a tree as its number of nodes or its

height. Non-examples include defining the size of a list of natural
numbers to be the number of successor constructors, and defining the
size of all natural numbers to be a constant (though see Section 6.5
for a discussion of this latter possibility).

The interpretation of most terms is standard except for that
of constructors and rec, which are given in Figure 4. We write
mapΦ,T0,T1 for semantic functions that mirror the definition of map,
and we overload the notation Ci to stand for inj i : JΦCi [δ]K→ Dδ .
The implementation of the recursors requires a bit of explanation,
and is motivated by the goal to have ‖e‖ bound the cost and potential
of e. We expect that J‖recδ(e, C 7→ x.eC)‖K, which depends on
Jrecδ(‖e‖p, C 7→ x.‖eC‖)K, should branch on J‖e‖pK, evaluating
to the appropriate J‖eC‖K. However, J‖e‖pK will be a semantic
value of type Sδ , whereas to branch, we need a semantic value
of type Dδ . Furthermore, J‖e‖pK is an upper bound on the size
of e, so J‖e‖pK does not tell us the precise form of e, and so we
cannot use J‖e‖pK to predict which branch the evaluation of the
source rec expression will follow. We solve these problems by
introducing a semantic case function, and define the denotation
of rec expressions by taking a maximum over the branches for all
semantic values that are bounded by the upper bound J‖e‖pK. This
is the source of the requirement that base-type potentials be closed
under arbitrary maximums. Although this requirement seems rather
strong, in most examples it seems easy to satisfy. In particular, we
think of most datatype potentials (sizes) as being natural numbers,
and so we satisfy the condition by interpreting them by N∞.

The restriction on size∆ ensures that the recursion used to
interpret rec expressions descends along a well-founded partial
order, and hence is well-defined. The maximum may end up being a
maximum over all possible values, but this simply indicates that our
interpretation fails to give us precise information.

We illustrate this semantics on some examples. In order to ease
the notation, we will occasionally write syntactic expressions for
the corresponding semantic values (in effect, dropping J·K). We also
write the case function as a branch on constructors; for example,
we write case(t,Emp 7→ x.〈1, 1〉 | Node 7→ 〈y, t0, t1〉.e) for
case(t, λx.〈1, 1〉, λ〈y, t0, t1〉.e).



caseδ :Dδ ×
∏
C

(SJΦC [δ]K→ Sτ )→ Sτ case(Cx, (. . . , fC , . . . )) = fC(x)

JCeKξ = size(C(JeKξ))

Jrecδ(Eδ, C 7→ xφC [δ×τ ].EτC)Kξ =
∨

size z≤JEKξ

case(z, (. . . , fC , . . . ))

fC(x) = JECKξ{x 7→ JmapΦC (w.〈w, rec(w,C 7→ x.EC)〉Kξ, x)}

= JECKξ{x 7→ mapΦC (λλa.(a, Jrec(w,C 7→ x.EC)Kξ{w 7→ a}), x)}

Figure 4: The interpretation of rec in the size-based semantics for the complexity language.

4.1 Booleans and Conditionals
In the source language we define booleans and their case construct:

datatype bool = True of unit | False of unit
case(ebool, eτ0 , e

τ
1) = rec(e, True 7→ e0 | False 7→ e1)

(recall our convention on writing eC for x.eC when φC = unit).
In the semantics of the complexity language, we interpret bool as a
one-element set {1}, so True and False are indistinguishable by
“size.” Our interpretation yields

J‖case(e, e0, e1)‖K
= ‖e‖c+c∨

size b≤‖e‖p

case(b,True 7→ 1 +c ‖e0‖ | False 7→ 1 +c ‖e1‖)

= ‖e‖c +c (case(True,True 7→ 1 +c ‖e0‖ | False 7→ 1 +c ‖e1‖)
∨ case(False,True 7→ 1 +c ‖e0‖ | False 7→ 1 +c ‖e1‖))

= (1 + ‖e‖c) +c (‖e0‖ ∨ ‖e1‖).
In other words, if we cannot distinguish between True and False
by size, then the interpretation of a conditional is just the maximum
of its branches (with the additional cost of evaluating the test). This
is precisely the interpretation used by Danner et al. (2013).

4.2 Tree Membership
Next we consider an example that shows that the “big” maximum
used to interpret the recursor can typically be simplified to the
recurrence that one expects to see. We analyze the cost of checking
membership in an int-labeled tree. We write e0 orelse e1 as an
abbreviation for case (e0, True 7→ True | False 7→ e1).

datatype tree = Emp of unit | Node of int× tree× tree
mem(t, x) = rec(t,
Emp 7→ False
Node 7→ 〈y, 〈t0, r0〉, 〈t1, r1〉〉.
y = x orelse (force r0 orelse force r1))

For this example, we treat int (in the source and complexity
languages) as a datatype with 232 constructors where the equality
test x = y is implemented by a rather large case analysis. Let us
define the size of a tree to be the number of nodes:

JtreeK = N∞

Dtree = {∗}+ {1} ×N∞ ×N∞

sizetree(Emp) = 0
sizetree(Node(1, n0, n1)) = 1 + n0 + n1

We would like to get the following recurrence for the cost of the
rec expression when t has size n:

T (0) = 1 T (n) =
∨

n0+n1+1=n

6 + T (n0) + T (n1)

(x = y requires an application and two case evaluations; each
orelse evaluation costs 1; and we charge for the rec reduction).

Working through the interpretation yields J‖mem(t, x)‖Kc =
‖t‖c + g(‖t‖p) + 1 where

g(n) = Jrec(z,Emp 7→ 1

Node 7→ 〈y, 〈t0, r0〉, 〈t1, r1〉〉.6 + (r0)c + (r1)c

K{z 7→ n}.

We can calculate that g(0) = 1, and for n > 0:

g(n) =
∨

size t≤n

case(t,

Emp 7→ 1

Node 7→ 〈y, n0, n1〉.6 + g(n0) + g(n1)

= g(n− 1) ∨
∨

size t=n

case(t, . . . )

= g(n− 1) ∨
∨

1+n0+n1=n

case(Node(1, n0, n1), . . . )

= g(n− 1) ∨
∨

1+n0+n1=n

(6 + g(n0) + g(n1))

We now notice that when we take n0 = 0 and n1 = n− 1 we have

6 + g(n0) + g(n1) = 6 + g(0) + g(n− 1) ≥ g(n− 1)

and hence

g(n) = g(n− 1) ∨
∨

1+n0+n1

(6 + g(n0) + g(n1))

=
∨

1+n0+n1

(6 + g(n0) + g(n1))

which is precisely the recurrence we would expect.

4.3 Tree Map
Next, we consider an example that illustrates reasoning about higher-
order functions and the benefits of choosing an appropriate notion
of size. We analyze the cost of the map function for nat-labeled
binary trees:

treemap(f, t) = rec(t,

Emp 7→ Emp
Node 7→ 〈y, 〈t0, r0〉, 〈t1, r1〉〉.

Node(f(y), force r0, force r1).

Suppose the cost of evaluating f is monotone with respect to the
size of its argument, where we define the size of a natural number n
to be 1 + n (to count the zero constructor). The cost of evaluating
treemap(f, t) should be bounded by 1 + n · (1 + f(s)c), where n
is the number of nodes in t, s is the maximum size of all labels in t,



and we write f(s)c for the cost of evaluating f on a natural number
of size s (the map runs f on an input of size at most s for each of
the n nodes, and takes an additional n steps to traverse the tree).

We take JtreeK = N∞ ×N∞, where we think of the pair (n, s)
as (number of nodes, maximum size of label), and use the mutual
ordering on pairs ((n, s) < (n′, s′) iff n ≤ n′ and s < s′ or n < n′

and s ≤ s′). The size function is defined as follows:

size(Emp) = (0, 0)

size(Node(n, (n0, s0), (n1, s1))) = (1 + n0 + n1,max{n, s0, s1}).

Let us write g(m, s) = J‖rec(. . . )‖K{t 7→ (m, s)}, so that
(J‖treemap‖K(f, (m, s)))c = g(m, s) + 1. We now show that
g(m, s) ≤ m(1 + f(s)c) by induction:

g(m, s)

=
∨

size z≤(m,s)

case(z,

Emp 7→ 1

Node 7→ 〈n, (n0, s0), (n1, s0)〉.(
1 + (f(n))c + (g(n0, s0))c + (g(n1, s1))c

)
= 1 ∨ ∨

1+n0+n1≤m
max{n,s0,s1}≤s

(
1 + f(n)c + (g(n0, s0))c + (g(n1, s1))c

)
≤

∨
1+n0+n1≤m

max{n,s0,s1}≤s

(1 + f(n)c+

n0 · (1 + f(s0)c) + n1 · (1 + f(s1)c))

≤
∨

1+n0+n1≤m
max{n,s0,s1}≤s

(1 + n0 + n1)(1 + f(max{n, s0, s1})c)

≤ m · (1 + f(s)c).

4.4 The Bounding Theorem for the Size-Based Semantics
The most basic correctness criterion for our technique is that a
closed source program’s operational cost is bounded by the cost
component of the denotation of its complexity translation. However,
to know that extracted recurrences are correct, it is not enough to
consider closed programs; we also need to know that the potential of
a function bounds that function’s operational cost on all arguments,
and so on at higher type. Thus, we use a logical relation. We
first show a simplified case of the logical relation, where for this
subsection only we do not allow datatype constructors to take
functions as arguments (i.e., drop the τ → φ clause from constructor
argument types φ). In Section 5, we consider the general case, which
requires some non-trivial technical additions to the main definition.

DEFINITION 2.

1. Let e be a closed source language expression and a a semantic
value. We write e vτ a to mean: if e ↓n v, then
(a) n ≤ ac; and
(b) v vval

τ ap.
2. Let v be a source language value and a a semantic value. We

define v vval
τ a by:

(a) () vval
unit 1.

(b) 〈v0, v1〉 vval
τ0×τ1 〈a0, a1〉 if vi vval

τi ai for i = 0, 1.
(c) delay(e) vval

susp τ a if e vτ a.

(d) C(v) vval
δ a if there is a′ such that v vval

φC [δ] a′ and
size(C(a′)) ≤ a.1

(e) λx.e vval
σ→τ a if whenever v vval

σ a′, e[v/x] vτ a(a′).

THEOREM 7 (Bounding theorem). If e : τ in the source language,
then e vτ J‖e‖K.

Rather than proving this bounding theorem directly, in Section 5
we identify syntactic constraints on the complexity language which
allow the proof to be carried through (Theorem 12). Because the size-
based semantics satisfies these syntactic constraints (see Section 6.1),
we can prove that the logical relation defined in Section 5 implies
the one defined above, giving Theorem 7 as a corollary.

5. The Syntactic Bounding Theorem
Rather than proving the bounding theorem for a particular model,
such as the one from the previous section, we use a syntactic
judgement Γ ` E0 ≤T E1 to axiomatize the properties that are
necessary to prove the theorem. The rules are in Figure 5; we omit
typing premises from the figure, but formally each rule has sufficient
premises to make the two terms have the indicated type. The first
two rules state reflexivity and transitivity. The next rule (congruence)
says that term contexts of a certain form (in the sequel, congruence
contexts) are monotonic. The next three rules state the monoid laws
for C; we write E0 = E1 to abbreviate two rules E0 ≤ E1 and
E1 ≤ E0. The final three rules (which we call “step rules”) say
that a β-redex is bigger than or equal to its reduct. The first five
congruence contexts are the standard head elimination contexts used
in logical relations arguments (principal arguments of elimination
forms) and the next two say that + is monotone.

These preorder rules are sufficient to prove the bounding theorem,
and permit a variety of interpretations and extensions. If we impose
no further rules, then E0 ≤ E1 is basically weak head reduction
from E1 to E0 (plus the monoid laws for C). We can also add rules
that identify elements of datatypes, in order to make those elements
behave like sizes. For example, for lists of ints, we can say

E ≤ Cons(_, E) Cons(E1, E) ≤ Cons(E2, E)

and extend the congruence contexts with Cons(x, C). Then the
second rule equates any two lists with the same number of elements,
quotienting them to natural numbers, and the first rule orders these
natural numbers by the usual less-than. Thus, considered up to ≤,
lists are lengths.

Combining these rules with the ones used to prove the bounding
theorem, the recursor for lists behaves like a monotonization of
the original recursion (like the

∨
in the size-based complexity

semantics). For example, for any specific list value Cons(x, xs),
by the usual step rule, we have

E1[(x, xs, rec(xs,Nil 7→ E0,Cons 7→ p.E1))/p] ≤
rec(Cons(x, xs),Nil 7→ E0,Cons 7→ p.E1)

But we can derive Nil ≤ Cons(x, xs), so we also have

rec(Nil, . . .) ≤ rec(Cons(x, xs), . . .) by congruence
E0 ≤ rec(Nil,Nil 7→ E0,Cons 7→ p.E1) by the step rule
E0 ≤ rec(Cons(x, xs),Nil 7→ E0,Cons 7→ p.E1) by transitivity

and similarly for non-empty lists that are ≤ Cons(x, xs). Thus,
when we quotient lists to their lengths, the congruence and step

1 Our restriction on the form of φC allows us to conclude that this definition
is well-founded, even though the type gets bigger in clause (2d), because we
can treat the definition ofvval

δ as an inner induction on the values. Allowing
datatype constructors to take function arguments complicates the situation,
and in Section 5 we must define a more general relation.



rules for rec (used to prove the bounding theorem) imply that the
recursor is bigger than all of the branches for all smaller lists.

In Section 4, we used reasoning in the size-based semantics to
massage the recurrence extracted from a program into a recognizable
and solvable form. In future work, we plan to investigate how to
do this massaging within the syntax of complexity language, using
the rules we have just discussed and others. For example, while a
recursion bounds what it steps to on all smaller values, we do not
yet have a rule stating that it is a least upper bound. Here, we lay a
foundation for this by proving the bounding theorem for the small
set of rules in Figure 5.

5.1 The Bounding Relation
First, we extend Definition 2 to arbitrary datatypes. Fix a signature ψ.
We will mutually define the following relations:

1. e vτ E, where ∅ `ψ e : τ and ∅ `‖ψ‖ E : ‖τ‖.

2. v vval
τ E, where ∅ `ψ v : τ and ∅ `‖ψ‖ E : 〈〈τ〉〉.

3. v vval
φ,R E, where ∅ `ψ v : φ[δ] and ∅ `‖ψ‖ E : 〈〈φ〉〉[δ].

4. e vφ,R E, where ∅ `ψ e : φ[δ] and ∅ `‖ψ‖ E : ‖φ‖[δ]

In (3) and (4), R(∅ `ψ v : δ, ∅ `‖ψ‖ E : δ), is any relation; these
parts interpret strictly positive functors as relation transformers.

The definition is by induction on τ and φ. For datatypes, the
signature well-formedness relation ψ sig ensures that datatypes
are ordered, where later ones can refer to earlier ones, but not vice
versa. Therefore, we could “inline” all datatype declarations: rather
than naming datatypes, we could replace each datatype name δ by
an inductive type µ[C of φ]. The logical relation is defined using
the subterm ordering for this “inlined” syntax. In addition to the
usual subterm ordering for types τ and functors φ, we have that
datatypes that occur earlier in ψ are smaller than later ones, and if
C : (φ→ δ) ∈ ψ, then φ is smaller than δ.

DEFINITION 3.

1. We write e vτ E to mean: if e ↓n v, then
• n ≤ Ec; and
• v vval

τ Ep.
2. We write v vval

τ E to mean:
• v vval

unit E is always true.
• 〈v1, v2〉 vval

τ1×τ2 E iff v1 vval
τ1 π0 E and v2 vval

τ2 π1 E.
• delay(e) vval

susp τ E iff e vτ E.
• v vval

δ E is inductively defined by

C : (φ→ δ) ∈ ψ v vval
φ,−vval

δ
− E

′ C E′ ≤δ E

C v vval
δ E

• λx .e vval
τ1→τ2 E iff (for all v1 and E1, if v1 vval

τ1 E1 then
e[v1/x] vτ2 E E1 ).

3. We write v vval
φ,R Ep to mean:

• v vval
t,R E if R(v,E).

• v vval
τ,R E if v vval

τ E (t not free in τ ).
• 〈v, v′〉 vval

φ×φ′,R E if v vval
φ,R π0 E and v′ vval

φ′,R π1 E.
• λx .e1 vval

τ→φ,R E1 if for all v and E, if v vval
τ E, then

e1[v/x] vφ,R (E1 E).
4. We write e vφ,R E to mean: if e ↓n v, then
• n ≤ Ec; and
• v vval

φ,R Ep.

The inner inductive definition of v vval
δ E makes sense because R

occurs strictly positively in − vval
φ,R −, and because (by signature

formation) δ cannot occur in φ, so − vval
δ − does not occur

elsewhere in − vval
φ,R −. The relation on open terms considers

all closed instances:

5. For a source substitution θ : γ and complexity substitution
Θ : Γ, we write θ vsub

γ Θ to mean that for all (x : τ) ∈ γ,
θ(x) vval

τ Θ(x).
6. For γ ` e : τ and Γ ` E : ‖τ‖, we write e vτ E to mean that

for all θ : γ and Θ : Γ, if θ vsub
γ Θ, then e[θ] vτ E[Θ].

We write E :: J to mean that E is a derivation of any of the
judgements just described. Because the relation for function types
is a function between relations, derivations are infinitely-branching
trees. A subderivation of such an E is any subtree of E , which
includes any application of an→-type judgement. For example, if
E1 :: λx.e1 vval

τ→φ,R E1 and E :: v vval
τ E, then the derivation of

e1[v/x] vval
φ,R E1 E is a subderivation of E1.

Next, we establish some basic properties of the relation:

LEMMA 8 (Weakening).

1. If e vτ E and E ≤‖τ‖ E′ then e vτ E′.
2. If v vval

τ E and E ≤〈〈τ〉〉 E′ then v vval
τ E′.

Proof. Both clauses are proved simultaneously by induction on τ ,
using congruence for π0 [ ], π1 [ ] and [ ] E . See the full paper for
details.

LEMMA 9 (Compositionality).

1. e vφ,−vval
τ − E iff e vφ[τ ] E.

2. v vval
φ,−vval

τ −
E iff v vval

φ[τ ] E.

Proof. (1) follows by post-composing with (2), and (2) follows by
induction on φ. See the full paper for details.

5.2 The Fundamental Theorem
First we state two lemmas which say that, when applied to related ar-
guments, source-language map is bounded by complexity-language
map, and that source-language rec is bounded by complexity-
language rec.

LEMMA 10 (Map). Suppose:

1. x : τ0 ` v1 : τ1 and ∅ ` v0 : φ[τ0];
2. x : 〈〈τ0〉〉 ` E1 : 〈〈τ1〉〉 and ∅ ` E0 : 〈〈φ〉〉[〈〈τ0〉〉];
3. E :: v0 vval

φ,−vval
τ0
− E0;

4. Whenever E ′ is a subderivation of E such that E ′ :: v′0 vval
τ0 E′0,

v1[v′0/x] vval
τ0 E1[E′0/x]; and

5. mapφ(x.v1, v0) ↓n v.

Then n = 0 and v vval
φ[τ0] map〈〈φ〉〉(x.E1, E0). 2

Proof. The proof is by induction on φ. Lemma 3 shows that n = 0.
Omitted cases are in the full paper.
CASE: φ = τ → φ0 . Then v0 = λy.e0 and E proves that
for all v′ vval

τ E′, e0[v′/y] vφ0,−vval
τ0
− E0(E′). Since v0 =

λy.e0, v = λy. let(e0, z.mapφ(x.v1, z)), so we must show that
λy. let(e0, z.mapφ(x.v1, z)) vval

τ→φ0[τ0] map〈〈τ→φ0〉〉(x.E1, E0).
To do so, suppose w vval

τ F ; we must show that

let(e0[w/y], z.mapφ(x.v1, z)) vφ0[τ0] map‖φ0‖(x.E1, E0(F )).
(*)

2 We could have said mapφ(x.v1, v0) vφ[τ0] 〈0,map〈〈φ〉〉(x.E1, E0)〉 but
this version of the lemma avoids needing the symmetric copy of the step rule
for pairs.



C ::=[ ] | π0 C | π1 C | C E | rec(C, C 7→ x.EC) | C + E | E + C

Γ ` E ≤T E
Γ ` E0 ≤T E1 Γ ` E1 ≤T E2

Γ ` E0 ≤T E2

Γ, x : T ′ ` C[x] : T Γ ` E0 ≤T ′ E1
(congruence)

Γ ` C[E0] ≤T C[E1]

Γ ` 0 + E =C E Γ ` E + 0 =C E Γ ` (E0 + E1) + E2 =C E0 + (E1 + E2)

Γ ` E0[E1/x] ≤T (λx.E0)E1 Γ ` Ei ≤Ti πi〈E0, E1〉
C : (Φ→ ∆) ∈ Ψ

Γ ` EC [mapΦ(y.〈y, rec(y, C 7→ x.EC)〉, E0)/x] ≤T rec∆(CE0, C 7→ x.EC)

Figure 5: Congruence contexts and the preorder judgement

Suppose

e0[w/y] ↓n0 w0 mapφ0(x.v1, w0) ↓n1 v′

let(e0[w/y], z.mapφ0(x.v1, z)) ↓n0+n1 v′

Since w vval
τ F , we have that E derives e0[w/y] vφ0,−vval

τ0
−

E0(F ) and hence we have a subderivation E0 of E such that E0 ::
w0 vval

φ0,−vval
τ0
− (E0(F ))p. We now verify that (4) holds for E0 so

that we can apply the induction hypothesis to to mapφ(x.v1, w0). So
suppose that E ′0 is a subderivation of E0 such that E ′0 :: w′0 vval

τ0 F ′0.
We need to show that v1[w′0/x] vval

τ0 E1[F ′0/x], and to do so it
suffices to note that E ′0 is a subderivation of E0, which in turn is a
subderivation of E .

We can now apply the induction hypothesis to conclude that
n1 = 0 and so:

n0 + n1 = n0 ≤ (E0 F )c =(map‖φ‖(x.E1, E0 F ))c

v′ vval
φ[τ0] map〈〈φ〉〉(x.E1, (E0 F )p) =(map‖φ‖(x.E1, E0 F ))p.

Using β for pairs, these are the two conditions that must be verified
to show (*), so this completes the proof.

LEMMA 11 (Recursor). Fix a datatype declaration datatype δ =
C of φ. If v vval

δ E and for all C, eC vφC [δ×susp τ ] EC , then
rec(v, C 7→ x.eC) v rec(E,C 7→ x.1 +c EC)

Proof. By induction on v vval
δ E. The only case is

C : (φ→ δ) ∈ ψ v′ vval
φ,−vval

δ
− E

′ C E′ ≤δ E

C v′ vval
δ E (†)

Assume rec(Cv′, C 7→ x.eC) evaluates. Then by inversion and
Lemma 2 it was by

C v′ ↓0 C v′

mapφ(y.〈y, delay(rec(y, C 7→ x.eC))〉, v′) ↓0 v′′
eC[v′′/x] ↓n2 v

rec(C v′, C 7→ x.eC) ↓0+1+n2 v

(*)

Using the premise that CE′ ≤δ E from (†), β for datatypes, and
congruence, we note that

rec(E,C 7→ x.1 +c EC)

≥ rec(C E′, C 7→ x.1 +c EC)

≥ 1 +c EC [map〈〈φ〉〉(y.〈y, rec(y, C 7→ x.1 +c EC)〉, E′)/x]

Let us write E∗ for map〈〈φ〉〉(y.〈y, rec(y, C 7→ x.1 +c EC)〉, E′).
Thus by congruence, transitivity, weakening, and β for pairs, it
suffices to show

1 + n2 ≤ 1 + EC [E∗/x]c

v vval (EC [E∗/x])p

By congruence for +, for the first goal it suffices to show
n2 ≤ EC [E∗/x]c. Thus, if we can show eC[v′′/x] v EC [E∗/x],
then applying it to the third evaluation premise of (*) gives the
result. We can use our assumption that eC v EC , as long as we
show v′′ vval E∗. To do so, we use Lemma 10 applied to the second
evaluation premise of (*) with

v1 = v′

E1 = E′
v = y.〈y, delay(rec(y, C 7→ x.eC))〉
E = y.〈y, rec(y, C 7→ x.1 +c EC)〉

We have E :: v′ vval
φ,−vval

δ
− E′ from the second premise of (†).

Thus, to finish calling the theorem, we need to show that for all
R-position subderivations of E deriving v′1 vval

δ E′1,

〈v′1, delay(rec(v′1, C 7→ x.eC))〉 vval
δ×susp τ

〈E′1, rec(E′1, C 7→ x.1 +c EC)〉
By definition of value bounding at product types, weakening and β
for pairs, it suffices to show

v′1 vval
δ E′1

delay(rec(v′1, C 7→ x.eC)) vval
susp τ rec(E′1, C 7→ x.1 +c EC)

The former we have, and for the latter by definition it suffices to
show

rec(v′1, C 7→ x.eC) vτ rec(E′1, C 7→ x.1 +c EC)

Because v′1 vval
δ E′1 is an R-subderivation of v′ vval

φ,−vval
δ
− E′,

and therefore a strict subderivation of C v′ vval
δ E, we can use the

inductive hypothesis on it, which gives exactly what we needed to
show.

THEOREM 12 (Bounding Theorem). If γ ` e : τ , then e vτ ‖e‖.

Proof. By induction on the derivation of γ ` e : τ . In each case we
state the last line of the derivation, taking as given the premises of
the typing rules in Figure 1. Omitted cases are in the full paper.
CASE: γ ` rec(e, C 7→ x.eC) : τ . We need to show

rec(e[θ], C 7→ x.eC [θ, x/x]) v 〈Ec + (Er)c, (Er)p〉
whereE = ‖e‖[Θ] andEr = rec(Ep, C 7→ x.(1 +c ‖eC‖[Θ, x/x])).
Suppose



e[θ] ↓n0 Cv0

mapφC (y.〈y, delay(rec(y, C 7→ x.eC [θ, x/x]))〉, v0) ↓0 v1

eC [θ, x/v1] ↓n2 v

rec(e[θ], C 7→ x.eC [θ, x/x]) ↓1+n0+n2 v

By the induction hypothesis e[θ] v E, so n0 ≤ Ec and
Cv0 vval Ep. By Lemma 2 we can derive

Cv0 ↓0 Cv0

mapφC (y.〈y, delay(rec(y, C 7→ x.eC [θ, x/x]))〉, v0) ↓0 v1

eC [θ, x/v1] ↓n2 v

rec(Cv0, C 7→ x.eC [θ, x/x]) ↓1+n2 v

So by Lemma 11 we have that 1 + n2 ≤ (Er)c and v vval (Er)p.
Putting these together, we have what we needed to show:

1 + n0 + n2 ≤ Ec + (Er)c v vval (Er)p

CASE: γ ` mapφ(x.v1, v0) : φ[τ1]. Because v1 is a sub-syntactic-
class of e, we can upcast it and apply ‖v1‖ to it, producing a
complexity expression. We must show that

mapφ(x.v1[θ, x/x], v0[θ]) v
〈0,map〈〈φ〉〉(x.‖v1‖[Θ, x/x]p, ‖v0‖[Θ]p)〉,

so suppose mapφ(x.v1[θ, x/x], v0[θ]) ↓n v. By transitivity/weaken-
ing with β for pairs, it suffices to show:

n ≤ 0 v vval map〈〈φ〉〉(‖v1‖[Θ, x/x]p, ‖v0‖[Θ]p) (*)

We will apply Lemma 10 to mapφ(x.v1[θ, x/x], v0[θ]) ↓n v with

v0 = v0[θ]

E0 = ‖v0‖[Θ]p

v1 = v1[θ, x/x]

E1 = ‖v1‖[Θ, x/x]p

To establish condition (3) we apply the IH to v0 to conclude
that v0[θ] vφ[τ0] ‖v0‖[Θ]. Since v0[θ] is a value, by Lemma 2,
it evaluates to itself. Therefore v0[θ] vval

φ[τ0] ‖v0‖[Θ]p and so by
Lemma 9, v0[θ] vval

φ,−vval
τ0
− ‖v0‖[Θ]p.

To establish condition (4), assume v′0 vval
τ0 E′0 (which is

an R-subderivation of the above, but we won’t use this fact).
Using the substitution lemmas we need to show v1[θ, v′0/x] vval

‖v1‖[Θ, E′0/x]p. Since θ, v′0/x vsub Θ, E′0/x, the IH on v1 gives
v1[θ, v′0/x] v ‖v1‖[Θ, E′0/x] and since v1[θ, v′0/x] is a value,
it evaluates to itself, so v1[θ, v′0/x] vval ‖v1‖[Θ, E′0/x]p as we
needed to show.

Now we apply Lemma 10 to conclude (*).

6. Models of the Complexity Language
A model of the complexity language consists of an interpretation of
types as preorders, and of terms as maps between elements of those
preorders, validating the rules of Figure 5. The congruence contexts
C, but not all terms, need to be monotone maps.

6.1 The Size-Based Complexity Semantics
We showed in Section 4 that the size-based semantics interpets the
syntax of the complexity language; it is also a model of the preorder
rules of Figure 5. Congruence is established by induction on C; we

do not need programmer-defined size functions to be monotonic,
because there is no congruence context for datatype constructors.

Jrec(CE0, x 7→ EC)Kξ

=
∨

size z≤size(CJE0Kξ)

case(z, (. . . , fC , . . . ))

≥ case(CJE0Kξ, (. . . , fC , . . . ))

= JECKξ{x 7→ JmapΦC (w.〈w, rec(w, x 7→ EC)〉, E0)Kξ}.
Verification of the pre-order axioms is straightforward. Therefore,
Theorem 7 is a corollary of Theorem 12.

6.2 Infinite-Width Trees
Infinite-width trees can be defined by the declaration

datatype tree = E of unit | N of int× (nat→ tree)

Though every branch in such a tree is of finite length, the height
of a tree is in general not a finite natural number. However, the
size-based semantics adapts easily to interpret tree by a suitably
large infinite successor ordinal, and then defining size(N(x, f)) =∨
y∈JnatK f(y) + 1.

6.3 A Semantics Without Arbitrary Maximums
The language studied in Danner et al. (2013) can be viewed as a
specific signature in the present language. Their language has a
type of booleans, a type int of fixed-size integers, and a type list
of integer lists. As in Example 4.2, we can treat int and bool
as enumerated datatypes with unit-cost operations. The list type
is defined as a datatype and its case and fold operators are easily
defined using rec.

For this specific signature, we can give a semantics of the
complexity language in which we interpret list by N instead of
N∞. Set JNilKξ = 0 and JCons(E0, E1)Kξ = JE1Kξ + 1. Define
a semantic primitive recursion operator by rec(0, a, f) = a and
rec(n+ 1, a, f) = a ∨ f(n, rec(n, a, f)). Finally, set

Jrec(E)Kξ =

rec(JEKξ, JENilKξ, λλn,w.JEConsKξ{x, xs, r 7→ 1, n, w}).

where rec(E) = rec(E,Nil 7→ ENil,Cons 7→ 〈x, 〈xs, r〉〉.ECons).
Verifying the preorder rules from Figure 5 is straightforward in all
cases except the last; we verify the Cons case as follows:

Jrec(Cons(E0, E1))Kξ
= (JENilKξ{x 7→ 1})∨

(JEConsKξ{x, xs, r 7→ 1, JE1Kξ, rec(JE1Kξ, . . . )})
≥ JEConsKξ{x, xs, r 7→ 1, JE1Kξ, rec(JE1Kξ, . . . )}
= JECons[E0, 〈E1, rec(E1)〉/x, 〈xs, r〉]Kξ
= JECons[E0,map(y.〈y, rec(y)〉, 〈E0, E1〉)/x, xs, r]Kξ.

6.4 Exact Costs
If we wish to reason about exact costs, we can symmetrize the
inequalities in Figure 5 into equalities, and add congruence for all
contexts, which makes the E0 ≤ E1 judgement into a standard
notion of definitional equality. Then we can take the term model in
the usual way, interpreting each type as a set of terms quotiented by
this definitional equality. In this interpretation ‖e‖c is a recurrence
that gives the exact cost of evaluating e, but reasoning about such a
recurrence involves reasoning about all of the details of the program.

6.5 Infinite Costs
Next, we consider a size-based model in which we drop the “in-
creasing” requirement on the size functions from Section 4. Rather



than requiring a well-founded partial order for each datatype, we
require an arbitrary partial order (Sτ ,≤τ ) which we also interpret
as a flat CPO (we do not require the interpretation of non-datatypes
to be CPOs). The interpretation of rec expressions is then in terms
of a general fixpoint operator. Define∞ =

∨
S∆ and identify∞

with the bottom element of the CPO ordering. In this setting it may
be that the interpretation of a rec expression does not terminate and
hence, by our identification, evaluates to∞. This turns out to be
exactly the right behavior, as we can see in the following example.

Take the standard inductive definition of nat and interpret nat as
some one-element set {1} in the complexity languageNow compute
the interpretation of the identity function:

J‖rec(y, Zero 7→ Zero, Succ 7→ x.Succx)‖K
= e(1)

=
∨

size z≤1

case(z,Zero 7→ (0, 1) | Succ 7→ 〈x, r〉.1 + ec(x))

where

e(x) = rec(x,Zero 7→ (0, 1) | Succ 7→ 〈x, r〉.(1 + rc, 1))

Since size(Succ(1)) = 1 ≤ 1, one of the case expres-
sions in the maximum is ec(1). In other words, we have a non-
terminating recursion in computing the complexity. We conclude
J‖rec(. . . )‖cK = ∞; in other words, we can draw no useful con-
clusion about the cost of this expression. What we have done in
this example is to declare that we cannot distinguish values of type
nat by size, and then we attempt to compute the cost of a recursive
function on nats in terms of the size of the recursion argument. The
bound given by the bounding theorem is correct, just not useful; it
does not even tell us that the computation terminates.

7. Related Work
There is a reasonably extensive literature over the last several
decades on (semi-)automatically constructing resource bounds from
source code. The first work concerns itself with first-order programs.
Wegbreit (1975) describes a system for analyzing simple Lisp pro-
grams that produces closed forms that bound running time. An
interesting aspect of this system is that it is possible to describe
probability distributions on the input domain and the generated
bounds incorporate this information. Rosendahl (1989) proposes a
system based on step-counting functions and abstract interpretation
for a first-order subset of Lisp. More recently the COSTA project
(see, e.g., Albert et al. (2012)) has focused on automatically com-
puting cost relations for imperative languages (actually, bytecode)
and solving them (more on that in the next section). Debray and Lin
(1993) develop a system for analyzing logic programs and Navas
et al. (2007) extend it to handle user-defined resources.

The Resource Aware ML project (RAML) takes a different
approach to the one we have described here, one based on type
assignment. Jost et al. (2010) describe a formalism that automatically
infers linear resource bounds for higher-order programs, provided
that the input program does in fact have a linear resource cost.
Hoffmann and Hofmann (2010) and Hoffmann et al. (2012) extend
this work to handle polynomial bounds, though for first-order
programs only, and Hoffmann and Shao (2015) extend it to parallel
programs. RAML uses a source language that is similar to ours,
but in which the types are annotated with variables corresponding
to resource usage. Type inference in the annotated system comes
down to solving a set of constraints among these variables. A very
nice feature of this work is that it handles cases in which amortized
analysis is typically employed to establish tight bounds, while our
approach can only conclude (worst-case) bounds.

Danielsson (2003) uses an annotated monad (similar to C×−)
to track running time in a dependently typed language, where size

reasoning can be done via types. He emphasizes reasoning about
amortized cost of lazy programs. He relies on explicit annotation of
the program, which our complexity translation inserts automatically,
and his correctness theorem is for closed programs, whereas we use
a logical relation to validate extracted recurrences.

We now turn to work that is closest in spirit to ours, focusing on
those aspects related to analysis of higher-order languages. Le Mé-
tayer’s (1988) ACE system is a two-stage system that first converts
FP programs (Backus 1978) to recursive FP programs describing
the number of recursive calls of the source program, then attempts
to transform the result using various program-transformation tech-
niques to obtain a closed form. Shultis (1985) defines a denotational
semantics for a simple higher-order language that models both the
value and the cost of an expression. As a part of the cost model,
he develops a system of “tolls,” which play a role similar to the
potentials we define in our work. The tolls and the semantics are
not used directly in calculations, but rather as components in a logic
for reasoning about them. Sands (1990) puts forward a translation
scheme in which programs in a source language are translated into
programs in the same language that incorporate cost information;
several source languages are discussed, including a higher-order
call-by-value language. Each identifier f in the source language is
associated to a cost closure that incorporates information about the
value f takes on its arguments; the cost of applying f to arguments;
and arity. Cost closures are intended to address the same issue our
higher-type potentials do: recording information about the future
cost of a partially-applied function. Van Stone (2003) annotates the
operational semantics for a higher-order language with cost informa-
tion. She then defines a category-theoretic denotational semantics
that uses “cost structures” to capture cost information and shows
that the latter is sound with respect to the former. Benzinger (2004)
annotates NuPRL’s call-by-name operational semantics with com-
plexity estimates. The language for the annotations is left somewhat
open so as to allow greater flexibility. The analysis of the costs is
then completed using a combination of NuPRL’s proof generation
and Mathematica. In all of these approaches the cost domain incor-
porates information about values in the source language so as to
provide exact costs. Our approach provides a uniform framework
that can be more or less precise about the source language values
that are represented. While we can implement a version that handles
exact costs, we can also implement a version in which we focus just
on upper bounds, which we might hope leads to simpler recurrences.

8. Conclusions and Further Work
We have described a denotational complexity analysis for a higher-
order language with a general form of inductive datatypes that yields
an upper bound on the cost of any well-typed program in terms of
the size of the input. The two steps are to translate each source-
language program e into a program ‖e‖ in a complexity language,
which makes costs explicit, and then to abstract values to sizes. A
consequence of the bounding theorem is that the cost component
of ‖e‖ is an upper bound on the evaluation cost of e. The bounding
theorem is purely syntactic and therefore applies in all models of the
complexity language. By varying the semantics of the complexity
language (and in particular, the notion of size), we can perform
analyses at different levels of granularity. We give several different
choices for the notion of size, but ultimately this is too important a
decision to take out of the hands of the user through automation.

The complexity translation of Section 3 can easily be adapted to
other cost models. For example, we could charge different amounts
for different steps. Or, we could analyze the work and span of
parallel programs by taking C to be series-parallel cost graphs,
something we plan to investigate in future work.

Another direction for future work is to handle different evaluation
strategies. Compositionality is a thorny issue when considering call-



by-need evaluation and lazy datatypes, and as noted by Okasaki
(1998), it may be that amortized cost is at least as interesting as
worst-case cost. Sands (1990), Van Stone (2003), and Danielsson
(2003) address laziness in their work, and as we already noted,
RAML already performs amortized analyses.

We plan to extend the source language to handle general re-
cursion. Part of the difficulty here is that the bounding relation
presupposes termination of the source program (so that the deriva-
tion of e ↓n v, and hence cost, is well-defined). One approach
would be to require the user to supply a termination proof. Or,
one could define the operational semantics of the source language
co-inductively (as done by, e.g., (Leroy and Grall 2009)), thereby
allowing explicitly for non-terminating computations. Another ap-
proach is to adapt the partial big-step operational semantics de-
scribed by Hoffmann et al. (2012). Since our source language sup-
ports inductive datatype definitions of the form datatype strm =
Cons of unit→ nat× strm, adding general recursion will force
us to understand how our complexity semantics plays out in the
presence of what are essentially coinductively defined values. One
could also hope to prove termination in the source language by first
extracting complexity bounds and then proving that these bounds
in fact define total functions. Another interesting idea along these
lines would be to define a complexity semantics in which the cost
domain is two-valued, with one value representing termination and
the other non-termination (or maybe more accurately, known termi-
nation and not-known-termination); such an approach might be akin
to an abstract interpretation based approach for termination analysis.

The programs ‖e‖ are complex higher-order recurrences that
call out for solution techniques. Benzinger (2004) addresses this
idea, as do Albert et al. (2011, 2013) of the COSTA project. Another
relevant aspect of the COSTA work is that their cost relations use
non-determinism; it would be very interesting to see if we could
employ a similar approach instead of the maximization operators
that we used in our examples. Ultimately we should have a library of
tactics for transforming the recurrences produced by the translation
function to closed (possibly asymptotic) forms when possible.
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