Homotopy Theory in Type Theory

Guillaume Brunerie, Daniel R. Licata, and Peter LeFanu Lumsdaine

Joint work with Eric Finster, Kuen-Bang Hou (Favonia), Michael Shulman

Homotopy Theory

A branch of topology, the study of spaces and continuous deformations

Homotopy

Deformation of one path into another
p
q

Homotopy

Deformation of one path into another

Homotopy

Deformation of one path into another

= 2-dimensional path between paths

Homotopy

Deformation of one path into another

= 2-dimensional path between paths
Homotopy theory is the study of spaces by way of their paths, homotopies, homotopies between homotopies,

Homotopy groups

$k^{\text {th }}$ homotopy group
n-dimensional sphere

	Π_{1}	Π_{2}	\#3	π_{4}	Π_{5}	Π_{6}	Π_{7}	Π_{8}	$\pi 9$	Π_{10}	Π_{11}	Π_{12}	Π_{13}	Π_{14}	Π_{15}
50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S^{1}	Z	0	0	0	0	0	0	0	0	0	0	0	0	0	0
s^{2}	0	Z	Z	\mathbf{Z}_{2}	\mathbf{Z}_{2}	\mathbf{Z}_{12}	\mathbf{Z}_{2}	\mathbf{Z}_{2}	\mathbf{Z}_{3}	\mathbf{Z}_{15}	\mathbf{Z}_{2}	$\mathbf{z}^{2}{ }^{2}$	$\mathbf{Z}_{12} \times \mathbf{Z}_{2}$	$\mathbf{Z}_{84} \times \mathbf{Z}_{2}{ }^{2}$	$\mathbf{z}_{2}{ }^{2}$
s^{3}	0	0	Z	\mathbf{Z}_{2}	\mathbf{Z}_{2}	\mathbf{Z}_{12}	Z_{2}	\mathbf{Z}_{2}	\mathbf{Z}_{3}	\mathbf{Z}_{15}	\mathbf{Z}_{2}	$\mathbf{z}_{2}{ }^{2}$	$\mathbf{Z}_{12} \times \mathbf{Z}_{2}$	$\mathbf{Z}_{84} \times \mathbf{Z}_{2}{ }^{2}$	$\mathbf{z}_{2}{ }^{2}$
s^{4}	0	0	0	Z	\mathbf{Z}_{2}	\mathbf{Z}_{2}	$\mathbf{Z} \times \mathbf{Z}_{12}$	$\mathbf{z}^{2}{ }^{2}$	$\mathbf{z}^{2}{ }^{2}$	$\mathbf{Z}_{24 \times} \times \mathbf{Z}_{3}$	\mathbf{Z}_{15}	\mathbf{Z}_{2}	$\mathbf{z}_{2}{ }^{3}$	$\mathbf{Z}_{120} \times \mathbf{Z}_{12} \times \mathbf{Z}_{2}$	$\mathbf{Z}_{84} \times \mathbf{Z}_{2}{ }^{5}$
5^{5}	0	0	0	0	Z	\mathbf{Z}_{2}	\mathbf{Z}_{2}	\mathbf{Z}_{24}	\mathbf{Z}_{2}	\mathbf{Z}_{2}	\mathbf{Z}_{2}	\mathbf{Z}_{30}	\mathbf{Z}_{2}	$\mathrm{z}_{2}{ }^{3}$	$\mathbf{Z}_{72} \times \mathbf{Z}_{2}$
\mathbf{S}^{6}	0	0	0	0	0	Z	\mathbf{z}_{2}	\mathbf{z}_{2}	\mathbf{Z}_{24}	0	Z	\mathbf{z}_{2}	\mathbf{Z}_{60}	$\mathbf{Z}_{24} \times \mathbf{Z}_{2}$	$\mathbf{z}_{2}{ }^{3}$
S^{7}	0	0	0	0	0	0	Z	\mathbf{Z}_{2}	\mathbf{Z}_{2}	\mathbf{Z}_{24}	0	0	\mathbf{Z}_{2}	\mathbf{Z}_{120}	$\mathbf{z}_{2}{ }^{3}$
\boldsymbol{s}^{8}	0	0	0	0	0	0	0	Z	\mathbf{z}_{2}	\mathbf{z}_{2}	\mathbf{Z}_{24}	0	0	\mathbf{z}_{2}	$\mathbf{Z} \times \mathbf{Z}_{120}$

[image from wikipedia]

Type Theory

An alternative to set theory, organized around types:
** Basic data types (\mathbb{N}, \mathbb{Z}, booleans, lists, ...)

* Functions

$$
\begin{aligned}
& \text { double }: \mathbb{N} \rightarrow \mathbb{N} \\
& \text { double } 0=0 \\
& \text { double }(n+1)=\text { double } n+2
\end{aligned}
$$

* Unifies sets and logic

Propositions as Types

1.A proposition is represented by a type
2.A proof is represented by an element of that type

$$
\forall x: \mathbb{N} . \operatorname{double}(x)=2^{*} x
$$

type of proofs of equality

Propositions as Types

1.A proposition is represented by a type
2.A proof is represented by an element of that type
proof: $\forall x: \mathbb{N}$. double $(x)=2^{*} x$
type of proofs of equality

Propositions as Types

1.A proposition is represented by a type
2.A proof is represented by an element of that type

```
proof : \forallx:\mathbb{N}. double(x) = 2*x
proof 0 = reflexivity
proof (n +1) = ...
```


Propositions as Types

1.A proposition is represented by a type
2.A proof is represented by an element of that type
proof : $\forall x: \mathbb{N}$. double(x) $=2^{*} x$
proof 0 = reflexivity
proof ($n+1$) = ...
proof by case analysis represented by a function defined by cases

Type are sets?

Traditional view:
type theory
<element> : <type>

$$
\text { <elem } m_{1}>=\text { <elem } m_{2} \quad x=y
$$

set theory
$x \in S$

In set theory, an equation is a proposition: we don't ask why $1+1=2$

Type are sets?

Traditional view:
type theory <element> : <type>
<proof> : <elem $1>$ = <elem ${ }_{2}>$
set theory
$x \in S$
$x=y$

In set theory, an equation is a proposition: we don't ask why $1+1=2$

In type theory, an equation has a <proof>

Homotopy Type Theory

type theory

homotopy theory

Types are ∞-groupoids

[Hofmann,Streicher,Awodey,Warren,Voevodsky Lumsdaine,Gambino,Garner,van den Berg]

Types are ∞-groupoids

type theory
<elem> : <type>
<proof> : <elem $1>$ = <elem $2>$
set theory

$$
x \in S
$$

$$
x=y
$$

Types are ∞-groupoids

type theory
<elem> : <type>
<proof> : <elem ${ }_{1}>=$ <elem ${ }_{2}>$
<2-proof> : <proof $1>$ = <proof $2>$
set theory

$$
x \in S
$$

$$
x=y
$$

Types are ∞-groupoids

type theory
<elem> : <type>
<proof> : <elem ${ }_{1}>=$ <elem $2>$
set theory

$$
x \in S
$$

$$
x=y
$$

<2-proof> : <proof ${ }_{1}>=$ proof $2>$
<3-proof> : <2-proof ${ }_{1}>=<2-$ proof $_{2}>$

Types are ∞-groupoids

type theory <elem> : <type>
<proof> : <elem ${ }_{1}>=$ <elem $2>$
set theory

$$
x \in S
$$

$$
x=y
$$

<2-proof> : <proof ${ }_{1}>=$ proof $2>$
<3-proof> : <2-proof ${ }_{1}>=<2-$ proof $_{2}>$

Homotopy Type Theory

type theory
new principles

Computer-checked proofs

Synthetic vs Analytic

Synthetic geometry (Euclid)

POSTULATES.

I.

Let it be granted that a straight line may be drawn from any one point to any other point.

That a terminated straight line may be produced to any length in a straight line.
III.

And that a circle may be described from any centre, at any distance from that centre.

Analytic geometry (Descartes)

Synthetic vs Analytic

Synthetic geometry (Euclid)

POSTULATES.

Let it be granted that a straight line may be drawn from any one point to any other point.

That a terminated straight line may be produced to any length in a straight line.

And that a circle may be described from any centre, at any distance from that centre.

Analytic geometry (Descartes)

Classical homotopy theory is analytic: * a space is a set of points equipped with a topology类 a path is a map $[0,1] \rightarrow X$

Synthetic homotopy theory

homotopy theory
space
points
paths
homotopies
type theory
<type>
<element> : <type>
<proof> : <elem ${ }_{1}>$ = <elem ${ }_{2}>$
<2-proof> : <proof ${ }_{1}>=<$ proof $_{2}>$

Synthetic homotopy theory

homotopy theory space points
paths
homotopies
type theory
<type>
<element> : <type>
<proof> : <elem ${ }_{1}>$ = <elem $2>$
<2-proof> : <proof ${ }_{1}>=$ pproof $2>$
A path is not a map $[0,1] \rightarrow X$; it is a basic notion

Spaces as types

Spaces as types

a space is a type A

Spaces as types

a space is a type A

points are
elements
M:A

Spaces as types

a space is a type A

M:A

> paths are
proofs of equality

$$
\alpha: M=A N
$$

Spaces as types

a space is a type A

paths are
proofs of equality

$$
\alpha: M=A N
$$

points are elements M:A
path operations

Spaces as types

a space is a type A

paths are
proofs of equality

$$
\alpha: M=A N
$$

points are elements M:A
path operations
id: $M=M$ (refl)

Spaces as types

a space is a type A

paths are
proofs of equality

$$
\alpha: M=A N
$$

points are elements M:A
path operations

$$
\begin{array}{ll}
\text { id } & : M=M(r e f l) \\
\alpha^{-1} & : N=M(s y m)
\end{array}
$$

Spaces as types

a space is a type A

paths are
proofs of equality

$$
\alpha: M=A N
$$

path operations

id	$: M=M$ (refl)
α^{-1}	$: N=M$ (sym)
$\beta \circ \alpha$	$: M=P$ (trans)

Spaces as types

a space is a type A

MA
path operations

$$
\begin{array}{ll}
\text { id } & : M=M \text { (refl) } \\
\alpha^{-1} & : N=M \text { (sym) } \\
\beta o \alpha & : M=P \text { (trans) }
\end{array}
$$

homotopies
id $o \alpha=\alpha$

$$
\alpha^{-1} o \alpha=i d
$$

$$
\gamma \circ(\beta \circ \alpha)
$$

$$
=(\gamma \quad 0 \beta) \circ \alpha
$$

$$
\alpha: M=A N
$$

Spaces as types

a space is a type A
points are elements

M:A
paths are
proofs of equality

$$
\alpha: M=A N
$$

path operations

$$
\begin{array}{ll}
\text { id } & : M=M \text { (refl) } \\
\alpha^{-1} & : N=M \text { (sym) } \\
\beta o \alpha & : M=P \text { (trans) }
\end{array}
$$

homotopies
id $o \alpha=\alpha$

$$
\alpha^{-1} o \alpha=\text { id }
$$

$$
\gamma \circ(\beta \circ \alpha)
$$

$$
=(\gamma \quad 0 \beta) \circ \alpha
$$

We can do computer-checked proofs in synthetic homotopy theory

We can do computer-checked proofs in synthetic homotopy theory

\author{

* Proofs are constructive*: can run them
}

We can do computer-checked proofs in synthetic homotopy theory

* Proofs are constructive*: can run them
* Results apply in a variety of settings, from simplicial sets (hence topological spaces) to Quillen model categories and ∞-topoi*

We can do computer-checked proofs in synthetic homotopy theory

* Proofs are constructive*: can run them

类 Results apply in a variety of settings, from simplicial sets (hence topological spaces) to Quillen model categories and ∞-topoi*

* New type-theoretic proofs/methods

We can do computer-checked proofs in synthetic homotopy theory

* Proofs are constructive*: can run them
* Results apply in a variety of settings, from simplicial sets (hence topological spaces) to Quillen model categories and ∞-topoi*
* New type-theoretic proofs/methods

Some results

Homotopy Theoretic

Type Theoretic

Some results

Homotopy Theoretic

Type Theoretic
$\pi_{1}\left(S^{1}\right)$

Some results

Homotopy Theoretic

Type Theoretic

$\pi_{1}\left(S^{1}\right) \longrightarrow \pi_{1}\left(S^{1}\right)$

Some results

Homotopy Theoretic

Type Theoretic

Some results

Homotopy Theoretic
 Type Theoretic

Some results

Homotopy Theoretic
 Type Theoretic

Some results

Homotopy Theoretic Type Theoretic

Freudenthal

Some results

Homotopy Theoretic Type Theoretic

Freudenthal

$$
\begin{gathered}
\downarrow \\
\pi_{n}\left(S^{n}\right)
\end{gathered}
$$

Outline

1. $\pi_{1}\left(S^{1}\right)=\mathbb{Z}$
2.The Hopf fibration
3.Connectedness and Freudenthal Suspension

Outline

$1 . \pi_{1}\left(S^{1}\right)=\mathbb{Z}$
2.The Hopf fibration
3.Connectedness and Freudenthal Suspension

Higher inductive types

Circle is inductively generated by

Higher inductive types

Circle is inductively generated by
base : Circle
loop : base = base

Higher inductive types

Circle is inductively generated by point base : Circle
loop : base = base

Higher inductive types

Circle is inductively generated by point base : Circle
path loop : base = base

Higher inductive types

Circle is inductively generated by point base : Circle
path loop : base = base

Free ∞-groupoid with these generators
id
inv : loop o loop-1 = id
loop-1
loop o loop

Higher inductive types

Circle recursion: function Circle \rightarrow X determined by

Higher inductive types

Circle recursion: function Circle \rightarrow X determined by

Circle induction: To prove a predicate P for all points on the circle, suffices to prove P (base), continuously in the loop

Fundamental group of circle

Definition. $\Omega\left(S^{1}\right)$ is the space of loops at base i.e. the type (base = base)

Fundamental group of circle

Definition. $\Omega\left(S^{1}\right)$ is the space of loops at base i.e. the type (base = base)

Theorem. $\Omega\left(S^{1}\right)$ is equivalent to \mathbb{Z}, by a map that sends o to +

Fundamental group of circle

Definition. $\Omega\left(S^{1}\right)$ is the space of loops at base i.e. the type (base = base)

Theorem. $\Omega\left(\mathrm{S}^{1}\right)$ is equivalent to \mathbb{Z}, by a map that sends o to +
Proof: two mutually inverse functions

$$
\begin{aligned}
& \text { winding }: \Omega\left(S^{1}\right) \rightarrow \mathbb{Z} \\
& \text { loop }^{n}: \mathbb{Z} \rightarrow \Omega\left(S^{1}\right)
\end{aligned}
$$

Fundamental group of circle

Definition. $\Omega\left(S^{1}\right)$ is the space of loops at base i.e. the type (base = base)

Theorem. $\Omega\left(\mathrm{S}^{1}\right)$ is equivalent to \mathbb{Z}, by a map that sends o to +
Proof: two mutually inverse functions

$$
\begin{aligned}
& \text { winding }: \Omega\left(S^{1}\right) \rightarrow \mathbb{Z} \\
& \text { loop }^{n}: \mathbb{Z} \rightarrow \Omega\left(S^{1}\right)
\end{aligned}
$$

Corollary: $\pi_{1}\left(\mathrm{~S}^{1}\right)$ is isomorphic to \mathbb{Z}

Fundamental group of circle

Definition. $\Omega\left(S^{1}\right)$ is the space of loops at base i.e. the type (base = base)

Theorem. $\Omega\left(\mathrm{S}^{1}\right)$ is equivalent to \mathbb{Z}, by a map that sends o to +
Proof: two mutually inverse functions

$$
\begin{aligned}
& \text { winding }: \Omega\left(S^{1}\right) \rightarrow \mathbb{Z} \\
& \text { loop }^{n}: \mathbb{Z} \rightarrow \Omega\left(S^{1}\right)
\end{aligned}
$$

0 -truncation
(set of connected components) of $\Omega(\mathrm{S} 1)$

Fundamental group of circle

Definition. $\Omega\left(S^{1}\right)$ is the space of loops at base i.e. the type (base = base)

Theorem. $\Omega\left(\mathrm{S}^{1}\right)$ is equivalent to \mathbb{Z}, by a map that sends o to +
Proof: two mutually inverse functions

$$
\begin{array}{ll}
\text { winding } & : \Omega\left(S^{1}\right) \rightarrow \mathbb{Z} \\
\text { loop }^{n} & : \mathbb{Z} \rightarrow \Omega\left(S^{1}\right)
\end{array}
$$

0 -truncation
(set of connected components) of $\Omega(\mathrm{S} 1)$
Corollary: $\pi_{1}\left(S^{1}\right)$ s isomorphic to \mathbb{Z} $\pi_{k}\left(S^{1}\right)$ trivial otherwise

Universal Cover

\mathbb{R}

$$
w: \Omega\left(S^{1}\right) \rightarrow \mathbb{Z}
$$

defined by lifting a loop to the cover, and giving the other endpoint of 0

S^{1}

Universal Cover

$$
w: \Omega\left(S^{1}\right) \rightarrow \mathbb{Z}
$$

defined by lifting a loop to the cover, and giving the other endpoint of 0
lifting is functorial

Universal Cover

$w: \Omega\left(S^{1}\right) \rightarrow \mathbb{Z}$
defined by lifting a loop to the cover, and giving the other endpoint of 0
lifting is functorial
lifting loop adds 1

Universal Cover

$w: \Omega\left(S^{1}\right) \rightarrow \mathbb{Z}$
defined by lifting a loop to the cover, and giving the other endpoint of 0
lifting is functorial
lifting loop adds 1
lifting loop $^{-1}$ subtracts 1

Universal Cover

$w: \Omega\left(S^{1}\right) \rightarrow \mathbb{Z}$
defined by lifting a loop to the cover, and giving the other endpoint of 0

$$
\begin{aligned}
& \text { Example: } \\
& \begin{array}{l}
\mathrm{w}\left(\text { loop o } \text { loop }^{-1}\right) \\
=0+1-1 \\
=0
\end{array}
\end{aligned}
$$

lifting loop ${ }^{-1}$ subtracts 1

Fibration = Family of types

Fibration (classically): map $p: E \rightarrow B$ such that any path from $p(e)$ to y lifts to a path in E from e to some point in $\mathrm{p}^{-1}(\mathrm{y})$

Fibration = Family of types

Fibration (classically): map $p: E \rightarrow B$ such that any path from $p(e)$ to y lifts to a path in E from e to some point in $\mathrm{p}^{-1}(\mathrm{y})$

Family of types $(E(x))_{x: B}$ * Fibers: $\mathrm{E}(\mathrm{b})$ is a type for all b : B

* transport: equivalence $E\left(b_{1}\right) \simeq E\left(b_{2}\right)$ for all $p: b_{1}={ }_{B} b_{2}$

Fibration = Family of types

Fibration (classically): map $p: E \rightarrow B$ such that any path from $p(e)$ to y lifts to a path in E from e to some point in $\mathrm{p}^{-1}(\mathrm{y})$

\mathbb{R}

Family of types $(E(x))_{x: B}$

* Fibers: $\mathrm{E}(\mathrm{b})$ is a type for all b : B
* transport: equivalence $E\left(b_{1}\right) \widetilde{ } \mathcal{A}\left(b_{2}\right)$ for all $p: b_{1}=b_{2}$

Fibration = Family of types

Fibration (classically): map p: E \rightarrow B such that any path from $p(e)$ to y lifts to a path in E from e to some point in $\mathrm{p}^{-1}(\mathrm{y})$

\mathbb{R}

Family of types $(E(x))_{x: B}$

* Fibers: $\mathrm{E}(\mathrm{b})$ is a type for all $\mathrm{b}: \mathrm{B}$
* transport: equivalence $E\left(b_{1}\right) \widetilde{ } \mathcal{A}\left(b_{2}\right)$ for all $p: b_{1}=b_{2}$ sends $\mathbf{e} \in \mathrm{E}(\mathrm{x})$ to other endpoint of lifting of p

Universal Cover

family of types (Cover(x))x:s1

Universal Cover

family of types $(\operatorname{Cover}(x))_{x: S 1}$

By circle recursion, it suffices to give

* Fiber over base: \mathbb{Z}
* Equivalence $\mathbb{Z} \xlongequal{\sim} \mathbb{Z}$ as lifting of loop: successor

Universal Cover

family of types $(\operatorname{Cover}(x))_{x: S 1}$

By circle recursion, it suffices to give

* Fiber over base: \mathbb{Z}

类 Equivalence $\mathbb{Z} \xlongequal{ } \mathbb{Z}$ as lifting of loop:
uses univalence successor

Universal Cover

family of types $\quad(\operatorname{Cover}(x))_{x}: S 1$

By circle recursion, it suffices to give

* Fiber over base: \mathbb{Z}

类 Equivalence $\mathbb{Z} \xlongequal{\sim} \mathbb{Z}$ as lifting of loop: uses univalence successor

Defining equations:
Cover(base) $:=\mathbb{Z}$
transportcover(loop) := successor

Winding number

$w: \Omega\left(S^{1}\right) \rightarrow \mathbb{Z}$
$w(p)=$ transport $_{\text {cover }}(p, 0)$

lift p to cover, starting at 0

Winding number
 $w: \Omega\left(S^{1}\right) \rightarrow \mathbb{Z}$
 $w(p)=$ transport $_{\text {cover }}(p, 0)$

lift p to cover, starting at 0
w(loop-1 o loop)

Winding number
 $w: \Omega\left(S^{1}\right) \rightarrow \mathbb{Z}$

$w(p)=$ transport $_{\text {cover }}(p, 0)$
lift p to cover, starting at 0

w(loop-1 o loop)
$=$ transpor $_{\text {cover }}\left(\right.$ loop $^{-1}$ o loop, 0)

Winding number
 $w: \Omega\left(S^{1}\right) \rightarrow \mathbb{Z}$

$w(p)=$ transport $_{\text {cover }}(p, 0)$
lift p to cover, starting at 0

w(loop-1 o loop)
$=$ transpor $_{\text {cover }}\left(\right.$ loop $^{-1}$ o loop, 0)
$=$ transpor $_{\text {cover }}\left(\right.$ loop $^{-1}$, transport $\left.\operatorname{cover}^{(l o o p, 0)}\right)$

Winding number
 $w: \Omega\left(S^{1}\right) \rightarrow \mathbb{Z}$

$w(p)=$ transport $_{\text {cover }}(p, 0)$
lift p to cover, starting at 0

w(loop-1 o loop)
$=$ transpor $_{\text {cover }}\left(\right.$ loop $^{-1}$ o loop, 0)
$=$ transpor $_{\text {cover }}\left(\right.$ loop $^{-1}$, transportcover $\left.(l o o p, 0)\right)$
$=\operatorname{transpor}_{\text {Cover }}\left(\right.$ loop $\left.^{-1}, 1\right)$

Winding number
 $w: \Omega\left(S^{1}\right) \rightarrow \mathbb{Z}$

$w(p)=$ transport $_{\text {cover }}(p, 0)$
lift p to cover, starting at 0

$$
\begin{aligned}
& \text { w(loop-1 o loop) } \\
= & \text { transportcover }^{\text {(loop }}{ }^{-1} \text { o loop, 0) } \\
= & \text { transportcover(loop }{ }^{-1}, \text { transportcover }(\text { loop,0) }) \\
= & \text { transportcover } \left.^{\left(l o o p^{-1},\right.} 1\right) \\
= & 0
\end{aligned}
$$

Fundamental group of the circle

The book

Computer-checked

3 Son mux mowerch cad

 $\eta\left(x: s^{\prime}\right)=(\mathrm{bum} / \mathrm{r}, \mathrm{x})$

 thedini

$\cos (\operatorname{lom})=\mathrm{z}$

mine + pent free Z 10Zin α

and

4 Cartas? Hownor nacar

\rightarrow mash $1=$ wount \rightarrow ($\mathrm{m}, 0)$

Drfaiber 24. Dibe


```
*)
*)
```


12133 Droding after enotirg

12114 beodirg tatr dending

can Zox

- interasken+2

T2113 Tring a all byghter

hrumbing niver give
Contluer 722 (bome - bour) $=2$

 Tit)
 (ower liepp cove (lose (ows a)) 2ers)

 TVantaizew Fiztix
-

- "um

 a(x) :
ist
$x=$ si
si Thec Int (ve suecforiv)
ist
$x=$ si
si Thec Int (ve suecforiv)
zenomp

Outline

1. $\pi_{1}\left(S^{1}\right)=\mathbb{Z}$
2.The Hopf fibration
3.Connectedness and Freudenthal Suspension

The Hopf fibration

The Hopf fibration is a fibration with

- base \mathbb{S}^{2}
- fiber \mathbb{S}^{1}
- total space \mathbb{S}^{3}

The Hopf fibration

The Hopf fibration is a fibration with

- base \mathbb{S}^{2}
- fiber \mathbb{S}^{1}
- total space \mathbb{S}^{3}

The Hopf fibration is a family of circles, parametrized by \mathbb{S}^{2} and whose "union" is \mathbb{S}^{3}.

Picture

© Benoît R. Kloeckner CC-BY-NC

The spheres

Definition

The suspension of a space A (denoted $\Sigma A)$ is generated by

- Two points $\mathrm{n}, \mathrm{s}: \Sigma A$
- For every a : A, a path $\mathrm{m}(a): \mathrm{n}=\Sigma A \mathrm{~s}$

Definition

$$
\mathbb{S}^{n+1}:=\Sigma \mathbb{S}^{n}
$$

Fibrations over \mathbb{S}^{2}

A fibration over \mathbb{S}^{2} is given by

- a space A (over n)

Fibrations over \mathbb{S}^{2}

A fibration over \mathbb{S}^{2} is given by

- a space A (over n)
- a space B (over s)

Fibrations over \mathbb{S}^{2}

A fibration over \mathbb{S}^{2} is given by

- a space A (over n)
- a space B (over s)
- a "circle of equivalences" between A and B (over m)
\Longleftrightarrow a function $e: \mathbb{S}^{1} \rightarrow(A \simeq B)$
\Longleftrightarrow for every $x: \mathbb{S}^{1}$, an equivalence $e_{x}: A \simeq B$

The Hopf fibration in HoTT

A fibration over \mathbb{S}^{2} with fiber \mathbb{S}^{1} and total space \mathbb{S}^{3} ?

The Hopf fibration in HoTT

A fibration over \mathbb{S}^{2} with fiber \mathbb{S}^{1} and total space \mathbb{S}^{3} ?

- \mathbb{S}^{1} over n
- \mathbb{S}^{1} over s
- for $x: \mathbb{S}^{1}$, the equivalence $e_{x}: \mathbb{S}^{1} \simeq \mathbb{S}^{1}$ is the "rotation of angle" x

The Hopf fibration in HoTT

A fibration over \mathbb{S}^{2} with fiber \mathbb{S}^{1} and total space \mathbb{S}^{3} ?

- \mathbb{S}^{1} over n
- \mathbb{S}^{1} over s
- for $x: \mathbb{S}^{1}$, the equivalence $e_{x}: \mathbb{S}^{1} \simeq \mathbb{S}^{1}$ is the "rotation of angle" x

Left to do:

- Define the rotation of angle x
- Prove that the total space is \mathbb{S}^{3}

Rotations of \mathbb{S}^{1}

We want

$$
e: \mathbb{S}^{1} \rightarrow\left(\mathbb{S}^{1} \simeq \mathbb{S}^{1}\right)
$$

Rotations of \mathbb{S}^{1}

We want

$$
e: \mathbb{S}^{1} \rightarrow\left(\mathbb{S}^{1} \simeq \mathbb{S}^{1}\right)
$$

By definition of \mathbb{S}^{1}, we need

- an equivalence $e_{\text {base }}: \mathbb{S}^{1} \simeq \mathbb{S}^{1}$
- a homotopy $e($ loop $): e_{\text {base }}=e_{\text {base }}$

Rotations of \mathbb{S}^{1}

We want

$$
e: \mathbb{S}^{1} \rightarrow\left(\mathbb{S}^{1} \simeq \mathbb{S}^{1}\right)
$$

By definition of \mathbb{S}^{1}, we need

- an equivalence $\mathrm{id}_{\mathbb{S}^{1}}: \mathbb{S}^{1} \simeq \mathbb{S}^{1}$
- a homotopy $e($ loop $): i d_{\mathbb{S}^{1}}=\mathrm{id}_{\mathbb{S}^{1}}$

Rotations of \mathbb{S}^{1}

We want

$$
e: \mathbb{S}^{1} \rightarrow\left(\mathbb{S}^{1} \simeq \mathbb{S}^{1}\right)
$$

By definition of \mathbb{S}^{1}, we need

- an equivalence $\mathrm{id}_{\mathbb{S}^{1}}: \mathbb{S}^{1} \simeq \mathbb{S}^{1}$
- a homotopy $e($ loop $): \mathrm{id}_{\mathbb{S}^{1}}=\mathrm{id}_{\mathbb{S}^{1}}$
e (loop) is the homotopy "turning once around the circle".

Homotopy turning once around the circle

A homotopy $\mathrm{id}_{\mathbb{S}^{1}}=\mathrm{id}_{\mathbb{S}^{1}} \Longleftrightarrow$ for every $x: \mathbb{S}^{1}$, a path $x=x$

Homotopy turning once around the circle

A homotopy $\mathrm{id}_{\mathbb{S}^{1}}=\mathrm{id}_{\mathbb{S}^{1}} \Longleftrightarrow$ for every $x: \mathbb{S}^{1}$, a path $x=x$
We need:

- a path

$$
p: \text { base }=\text { base }
$$

- a (2-dimensional) path

$$
q: p \cdot \text { loop }=\text { loop } \cdot p
$$

Homotopy turning once around the circle

A homotopy $\mathrm{id}_{\mathbb{S}^{1}}=\mathrm{id}_{\mathbb{S}^{1}} \Longleftrightarrow$ for every $x: \mathbb{S}^{1}$, a path $x=x$
We need:

- a path
loop : base = base
- a (2-dimensional) path

$$
q \text { : loop } \cdot \text { loop }=\text { loop } \cdot \text { loop }
$$

Homotopy turning once around the circle

A homotopy $\mathrm{id}_{\mathbb{S}^{1}}=\mathrm{id}_{\mathbb{S}^{1}} \Longleftrightarrow$ for every $x: \mathbb{S}^{1}$, a path $x=x$
We need:

- a path
loop : base = base
- a (2-dimensional) path

$$
\text { refl loop }^{\text {loop }} \text { : loop } \cdot \text { loop }=\text { loop } \cdot \text { loop }
$$

Total space

We just constructed a fibration with

- base \mathbb{S}^{2}
- fiber \mathbb{S}^{1}

What is the total space?

Homotopy pushouts

Given a span

$$
Y \stackrel{f}{\leftarrow} X \xrightarrow{g} Z
$$

Definition

The homotopy pushout $Y \sqcup^{X} Z$ is the space generated by

- For all $y: Y$, a point $I(y): Y \sqcup^{X} Z$
- For all $z: Z$, a point $r(z): Y \sqcup^{X} Z$
- For all $x: X$, a path $g(x): I(f(x))=r(g(x))$

The suspension of A is the homotopy pushout of

$$
1 \longleftarrow A \longrightarrow 1
$$

Total space

By gluing/descent/flattening, the total space is the homotopy pushout of:

$$
\mathbb{S}^{1}<\mathrm{e} \mathbb{S}^{1} \times \mathbb{S}^{1} \xrightarrow{p_{2}} \mathbb{S}^{1}
$$

Total space

By gluing/descent/flattening, the total space is the homotopy pushout of:

$$
\mathbb{S}^{1} e^{\mathrm{e}} \mathbb{S}^{1} \times \mathbb{S}^{1} \xrightarrow{p_{2}} \mathbb{S}^{1}
$$

This span is equivalent to the following:

$$
\mathbb{S}^{1} \stackrel{p_{1}}{\leftarrow} \mathbb{S}^{1} \times \mathbb{S}^{1} \xrightarrow{p_{2}} \mathbb{S}^{1}
$$

whose total space is $\mathbb{S}^{1} \star \mathbb{S}^{1}$

Join

Definition

The join of A and B is the homotopy pushout of

$$
A \nleftarrow \stackrel{p_{1}}{\leftarrow} A \times B \xrightarrow{p_{2}} B
$$

Join

Definition

The join of A and B is the homotopy pushout of

$$
A \stackrel{p_{1}}{\leftarrow} A \times B \xrightarrow{p_{2}} B
$$

$$
A \star B
$$

We have

$$
\begin{aligned}
\mathbb{S}^{0} \star A & =\Sigma A \\
(A \star B) \star C & =A \star(B \star C)
\end{aligned}
$$

Total space

$$
\begin{aligned}
\mathbb{S}^{1} \star \mathbb{S}^{1} & =\left(\Sigma \mathbb{S}^{0}\right) \star \mathbb{S}^{1} \\
& =\left(\mathbb{S}^{0} \star \mathbb{S}^{0}\right) \star \mathbb{S}^{1} \\
& =\mathbb{S}^{0} \star\left(\mathbb{S}^{0} \star \mathbb{S}^{1}\right) \\
& =\Sigma\left(\Sigma \mathbb{S}^{1}\right) \\
& =\mathbb{S}^{3}
\end{aligned}
$$

Total space

$$
\begin{aligned}
\mathbb{S}^{1} \star \mathbb{S}^{1} & =\left(\Sigma \mathbb{S}^{0}\right) \star \mathbb{S}^{1} \\
& =\left(\mathbb{S}^{0} \star \mathbb{S}^{0}\right) \star \mathbb{S}^{1} \\
& =\mathbb{S}^{0} \star\left(\mathbb{S}^{0} \star \mathbb{S}^{1}\right) \\
& =\Sigma\left(\Sigma \mathbb{S}^{1}\right) \\
& =\mathbb{S}^{3}
\end{aligned}
$$

We have the Hopf fibration in homotopy type theory.

Long exact sequence

Long exact sequence of homotopy groups of the Hopf fibration:

Long exact sequence

Long exact sequence of homotopy groups of the Hopf fibration:

Long exact sequence

Long exact sequence of homotopy groups of the Hopf fibration:

Long exact sequence

Long exact sequence of homotopy groups of the Hopf fibration:

Homotopy groups

Theorem

We have

$$
\begin{gathered}
\pi_{2}\left(\mathbb{S}^{2}\right)=\mathbb{Z} \\
\pi_{k}\left(\mathbb{S}^{2}\right)=\pi_{k}\left(\mathbb{S}^{3}\right) \text { for } k \geq 3
\end{gathered}
$$

In particular
Theorem
Assuming $\pi_{3}\left(\mathbb{S}^{3}\right)=\mathbb{Z}$

$$
\pi_{3}\left(\mathbb{S}^{2}\right)=\mathbb{Z}
$$

$\pi_{4}\left(\mathbb{S}^{3}\right)$

Theorem

There exists a natural number n such that $\pi_{4}\left(\mathbb{S}^{3}\right) \simeq \mathbb{Z} / n \mathbb{Z}$.

$\pi_{4}\left(\mathbb{S}^{3}\right)$

Theorem

There exists a natural number n such that $\pi_{4}\left(\mathbb{S}^{3}\right) \simeq \mathbb{Z} / n \mathbb{Z}$.

- Classical mathematics: cannot compute n, unless the proof is nice enough

$\pi_{4}\left(\mathbb{S}^{3}\right)$

Theorem

There exists a natural number n such that $\pi_{4}\left(\mathbb{S}^{3}\right) \simeq \mathbb{Z} / n \mathbb{Z}$.

- Classical mathematics: cannot compute n, unless the proof is nice enough
- Constructive mathematics: disallow the axiom of choice and excluded middle \Longrightarrow every proof is nice enough

$\pi_{4}\left(\mathbb{S}^{3}\right)$

Theorem

There exists a natural number n such that $\pi_{4}\left(\mathbb{S}^{3}\right) \simeq \mathbb{Z} / n \mathbb{Z}$.

- Classical mathematics: cannot compute n, unless the proof is nice enough
- Constructive mathematics: disallow the axiom of choice and excluded middle \Longrightarrow every proof is nice enough

In this case we can compute the value of n and get 2^{*}

[^0]
Outline

1. $\pi_{1}\left(S^{1}\right)=\mathbb{Z}$
2.The Hopf fibration
3.Connectedness and Freudenthal Suspension

Part III: Freudenthal and friends

1. Truncatedness
2. Connectedness
3. Freudenthal Suspension Theorem

Truncatedness

Definition

A type X is n-truncated (or an n-type) if, by induction on $n \geq-2$:

- $n=-2$: if X is contractible, i.e. $X \simeq 1$;
- $n>-2$: if each path space $\left(x={ }_{X} x^{\prime}\right)$ of X is ($n-1$)-truncated.

Proposition

Suppose X is n-truncated, for $n \geq-1$. Then $\pi_{k}\left(X, x_{0}\right) \simeq 1$, for all $k>n$ and $x_{0}: X$.
[In Top and SSet, the converse holds; but not in all classical settings, cf. Whitehead's theorem and hypercompleteness.]

Truncations

Definition

For any type X, and $n \geq-1$, the n-truncation $\tau_{n} X$ is the higher inductive type generated by:

- for $x: X$, an element $[x]_{n}: \tau_{n} X$;
- for $f: \mathbb{S}^{n+1} \rightarrow \tau_{n} X$, and $t: \mathbb{S}^{n+1}$, a path $f(t)=f(0)$.

Proposition

$\tau_{n} X$ is the free n-truncated type on X : any $f: X \rightarrow Y$, with Y n-truncated, factors uniquely through $\tau_{n} X$.
[Classically: iteratively glue cells on to X to kill homotopy in dimensions $>n$.]

Connectedness (of types)

Definition

X is n-connected if $\tau_{n+1} X$ is contractible.

Proposition

TFAE:

- X is n-connected;
- every map from X to an n-type is constant;
- (when $n \geq 0) \pi_{k}\left(X, x_{0}\right) \simeq 1$, for all $k \leq n$ and $x_{0}: X$.

Connectedness (trivial low homotopy groups) is dual to truncatedness (trivial high homotopy groups).

Connectedness (of maps)

Definition

$f: A \rightarrow B$ is n-connected if each (homotopy) fiber $f^{-1}(b)$ is n-connected. (Warning: indexing conventions vary by ± 1.)

Proposition

TFAE:

- f is n-connected;
- f is weakly (or strongly) orthogonal to maps with n-truncated fibers;
- f is equivalent to the inclusion of A into some extension by cells of dimensions $>n$.

Additivity of connectedness

Lemma (Wedge-product connectedness)

Suppose (X, x_{0}) is i-connected, $\left(Y, y_{0}\right)$ is j-connected. Then the inclusion $X \sqcup_{1} Y \hookrightarrow X \times Y$ is $(i+j)$-connected.

Type-theoretically: to define a function of two variables $f(x, y)$ into an $(i+j)$-type, enough to define in the cases $f\left(x_{0}, y\right)$ and $f\left(x, y_{0}\right)$, agreeing in the case $f\left(x_{0}, y_{0}\right)$.

Freudenthal

Definition

Recall: the suspension ΣX is generated by

- N, S : ΣX;
- for each $x: X$, a path $m(x): N=\Sigma X S$.

Theorem (Freudenthal Suspension Theorem)

Suppose (X, x_{0}) is n-connected. Then the canonical map
$X \rightarrow \Omega(\Sigma X, N)$ is $2 n$-connected.

Idea: want $X \rightarrow \Omega(\Sigma X, N)$ to be an equivalence. Generally (e.g. for $\Sigma \mathbb{S}^{1} \simeq \mathbb{S}^{2}$) it isn't; but within a certain dimension range, it is.

Important application: stable homotopy groups of spheres.

Proof: weak Freudenthal

For now, prove a weaker statement. (Same approach, with more work, yields full FST.)

Theorem (Weak Freudenthal)

Suppose $\left(X, x_{0}\right)$ is n-connected. Then the canonical map $\tau_{2 n}(X) \rightarrow \tau_{2 n} \Omega(\Sigma X, N)$ is an equivalence.

Proof.

Heuristic: to prove a result of the form $X \approx \Omega\left(Y, y_{0}\right)$, generalise X to a dependent type \bar{X}_{y} over $y: Y$, with $\bar{X}_{y_{0}} \simeq X$, and prove $\bar{X}_{y} \approx\left(y_{0}=\gamma y\right)$ for all $y: Y$.
So: define type \bar{X}_{y} depending on $y: \Sigma X$, and maps $\bar{m}_{y}: \bar{X}_{y} \rightarrow \tau_{2 n}(N=y)$, using universal property of ΣX.

Weak Freudenthal, cont'd

Proof.

To give \bar{X}_{y}, \bar{m}_{y} for all $y: \Sigma X$, need:

- types and maps $\bar{m}_{N}: \bar{X}_{N} \rightarrow \tau_{2 n}(N=N)$, and $\bar{m}_{S}: \bar{X}_{S} \rightarrow \tau_{2 n}(N=S)$;
- transport equivalences transport $\overline{\bar{X}}^{m}\left(x_{1}\right): \bar{X}_{N} \rightarrow \bar{X}_{S}$, for each $x_{1}: X$, commuting with \bar{m}_{N}, \bar{m}_{S}.

$$
\begin{array}{cc}
\text { over } S: & \bar{m}_{S}:=\tau_{2 n}(m): \tau_{2 n}(X) \rightarrow \tau_{2 n}(N=S) \\
\text { over } N: & \bar{m}_{N}:=\tau_{2 n}\left(x \mapsto m(x) \circ m\left(x_{0}\right)^{-1}\right): \tau_{2 n}(X) \rightarrow \tau_{2 n}(N=N)
\end{array}
$$

and over $m(x)$, need to define for each $x_{1}: X$ the action transport $\bar{X}(m(x),-): \bar{X}_{N} \rightarrow \bar{X}_{S}$.

Weak Freudenthal, cont'd

Proof.

\ldots transport over $m\left(x_{1}\right)$: need to give, for each $x_{1}: X$ and
$z: \bar{X}_{N}=\tau_{2 n}(X)$, some element of $\bar{X}_{S}=\tau_{2 n}(X)$.
Since RHS is $2 n$-truncated, may assume z is of form $\left[x_{2}\right]$, some x_{2} : X. Also, by wedge-product connectedness lemma, enough to assume one of x_{1}, x_{2} is x_{0}. So: when $x_{1}=x_{0}$, return $\left[x_{2}\right]$. When $x_{2}=x_{0}$, return $\left[x_{1}\right]$. (Check: when $x_{1}=x_{2}=x_{0}$, these agree)
(Roughly: defining a multiplication $X \times \tau_{2 n}(X) \rightarrow \tau_{2 n}(X)$, with x_{0} as a two-sided unit.)
So: have $\bar{m}_{y}: \bar{X}_{y} \rightarrow(N=y)$, for all $y: \Sigma X$.
Define converse $\bar{n}_{y}:(N=y) \rightarrow \bar{X}_{y}$ by $n_{y}(p):=\operatorname{transport}_{\bar{X}}\left[x_{0}\right]$. Not hard to prove \bar{m}, \bar{n} mutually inverse; so, each \bar{m}_{y} is an equivalence, as desired.

Consequences

From (weak) Freudenthal, immediately have:

Corollary (Homotopy groups of spheres stabilise)
 $\pi_{n+k}\left(\mathbb{S}^{n}\right) \simeq \pi_{n+1+k}\left(\mathbb{S}^{n+1}\right)$, for $n \geq k+2$.

In particular,

Corollary

$\pi_{n}\left(\mathbb{S}^{n}\right) \simeq \mathbb{Z}$, for all $n \geq 1$.

Proof.

- $n=1$: by universal cover.
- $n=2$: by LES of Hopf fibration.
- $n \geq 2$: by stabilisation.

$\pi_{k}\left(S^{n}\right)$ in Ho TT

$k^{\text {th }}$ homotopy group

		π_{1}	Π_{2}	Π_{3}	π_{4}	π_{5}	$\pi 6$	${ }_{7}$	Π_{8}	п9	π_{10}	π_{11}	π_{12}	π_{13}	Π_{14}	π_{15}
(1)	50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
¢	s^{1}	z	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	s^{2}	0	z	z	z_{2}	z_{2}	z_{12}	z_{2}	z_{2}	z_{3}	Z_{15}	z_{2}	z^{2}	$\mathbf{z}_{12} \times \mathbf{z}_{2}$	$\mathrm{Z}_{84} \times \mathrm{Z}_{2}{ }^{2}$	$z_{2}{ }^{2}$
¢	s^{3}	0	0	z	Z_{2}	z_{2}	z_{12}	z_{2}	z_{2}	z_{3}	z_{15}	z_{2}	$z_{2}{ }^{2}$	$\mathbf{z}_{12} \times \mathbf{z}_{2}$	$\mathrm{Z}_{84} \times \mathrm{Z}_{2}{ }^{2}$	$\mathbf{z}_{2}{ }^{2}$
\cdots	s^{4}	0	0	0	z	z_{2}	Z_{2}									
(1)	5^{5}	0	0	0	0	z	Z_{2}	z_{2}	Z_{24}							
E	5^{6}	0	0	0	0	0	z	z_{2}	Z_{2}	Z_{24}	0					
1	s^{7}	0	0	0	0	0	0	z	Z_{2}	z_{2}	Z_{24}	0	0			
	s^{8}	0	0	0	0	0	0	0	z	z_{2}	z_{2}	Z_{24}	0	0	z_{2}	

[image from wikipedia]

More results

James construction

Refinement of Freudenthal: describes $\Omega(\Sigma X)$ precisely, via a filtration.

Theorem

Suppose $\left(X, x_{0}\right)$ is n-connected, for $n \geq 0$. There is a sequence

$$
1 \longrightarrow X \longrightarrow J_{2}(X) \longrightarrow J_{3}(X) \longrightarrow J_{4}(X) \longrightarrow \cdots
$$

with the maps having respective connectivities $(n-1), 2 n,(3 n+1)$,

Conceptually, $J_{\infty}(X)$ is the free monoid on X; as X is connected, this is the free group on X.

Blakers-Massey

Generalization of Freudenthal: describes path spaces in pushouts.

Theorem (Blakers-Massey theorem)

Suppose given maps f, g as below, with $f i$-connected, $g j$-connected.

Then for all $x: X, y: Y$, the canonical map $Z_{x, y} \rightarrow(\operatorname{inl} x=\operatorname{inr} y)$ is $(i+j)$-connected.

van Kampen

Another tool for pushouts of types:

Theorem (van Kampen theorem)

For any pointed maps $f: Z \rightarrow X$ and $g: Z \rightarrow Y$, with Z 0-connected, the fundamental group of the pushout of f and g is the amalgamated free product (pushout of groups) of $\pi_{1}(X)$ and $\pi_{1}(Y)$ over $\pi_{1}(Z)$:

$$
\pi_{1}\left(X \sqcup_{Z} Y\right) \simeq \pi_{1}(X) *_{\pi_{1}(Z)} \pi_{1}(Y)
$$

Can also be generalised to non-connected Z.

Covering spaces

The (beautiful) classical theory of covering spaces transfers straightforwardly. In particular:

Definition

A covering space of a connected type X is a dependent family of 0-types over X.

Theorem

Covering spaces of X correspond to sets with an action of $\pi_{1}(X)$.

Eilenberg-Mac Lane spaces; cohomology

Eilenberg-Mac Lane spaces of Abelian groups can be constructed as HIT's:

Theorem

For any (n-truncated) Abelian group G and natural number $n>0$, there is a type $K(G, n)$ such that $\pi_{n}(K(G, n)) \simeq G$, and $\pi_{n}(K(G, n)) \simeq 1$ for $k \neq n$.

These (and other spectra) can be used to define cohomology of types.

Conclusion

We can do
computer-checked proofs
in synthetic homotopy theory

January 14, 2013

$\pi_{1}\left(S^{1}\right)=\mathbb{Z}$
$\pi_{k<n}\left(S^{n}\right)=0$

April 11, 2013

$\pi_{1}\left(\mathbf{S}^{1}\right)=\mathbb{Z}$
$\pi_{k<n}\left(S^{n}\right)=0$
Hopf fibration
$\pi_{2}\left(\mathbf{S}^{2}\right)=\mathbb{Z}$
$\pi_{3}\left(\mathrm{~S}^{2}\right)=\mathbb{Z}$
James
Construction
$\pi_{4}\left(S^{3}\right)=\mathbb{Z}$?

Freudenthal
$\pi_{n}\left(\mathbf{S}^{n}\right)=\mathbb{Z}$
K(G,n)
Cohomology axioms

Blakers-Massey

Van Kampen
Covering spaces
Whitehead for n-types

[^0]: *work in progress

