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A branch of topology,
the study of spaces and continuous deformations
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Deformation of one path into another

[image from wikipedia]
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= 2-dimensional path between paths

Homotopy theory is the study of spaces by way of 
their paths, homotopies, homotopies between 
homotopies, …. 
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Type Theory
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Basic data types (ℕ, ℤ, booleans, lists, …)

Functions 

Unifies sets and logic

double : ℕ ! ℕ
double 0 = 0
double (n +1) = double n + 2 

An alternative to set theory, organized around types:
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1.A proposition is represented by a type

2.A proof is represented by an element of that type

 ∀x: ℕ. double(x) = 2*x

type of proofs of equality
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Propositions as Types

6

1.A proposition is represented by a type

2.A proof is represented by an element of that type

 ∀x: ℕ. double(x) = 2*xproof :

proof 0 = reflexivity
proof (n +1) = ... 

proof by case analysis represented 
by a function defined by cases
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type theory                                
<element> : <type> x ∈ S

<elem1> = <elem2> x = y

In set theory, an equation is a proposition:
we don’t ask why 1+1=2

Traditional view:   

  set theory
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type theory                                
<element> : <type> x ∈ S

<elem1> = <elem2> x = y

In set theory, an equation is a proposition:
we don’t ask why 1+1=2

Traditional view:   

In type theory, an equation has a <proof> 

  set theory

<proof> : 



category theory homotopy theory

type theory

Homotopy Type Theory
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Types are ∞-groupoids

[Hofmann,Streicher,Awodey,Warren,Voevodsky 
Lumsdaine,Gambino,Garner,van den Berg]
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  set theory

<proof> : 
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type theory                                
<elem> : <type> x ∈ S

<elem1> = <elem2> x = y

  set theory

<proof> : 
<proof1> = <proof2><2-proof> : 

...

<2-proof1> = <2-proof2><3-proof> : 



category theory homotopy theory

type theory

Homotopy Type Theory
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new proofsnew principles
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Proof
checker

Correct!

Incorrect

Homotopy 
Type Theory

Computer-checked proofs

Your proof
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Synthetic geometry (Euclid) Analytic geometry
(Descartes)

[image from wikipedia]
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Synthetic geometry (Euclid) Analytic geometry
(Descartes)

[image from wikipedia]

Classical homotopy theory is analytic:
a space is a set of points equipped with a topology

a path is a map [0,1] → X



Synthetic homotopy theory
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type theory                                

<element> : <type>
<elem1> = <elem2>

  homotopy theory

<proof> : 
<proof1> = <proof2><2-proof> : 

...

points
paths

homotopies

...

space <type>



Synthetic homotopy theory
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type theory                                

<element> : <type>
<elem1> = <elem2>

  homotopy theory

<proof> : 
<proof1> = <proof2><2-proof> : 

...

points
paths

homotopies

...

space <type>

A path is not a map [0,1]→X; it is a basic notion
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M
N
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α

points are 
elements
M:A

a space is a type A

paths are
proofs of equality
α : M =A N

path operations

id    : M = M (refl)
α-1     : N = M  (sym)-1
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paths are
proofs of equality
α : M =A N

path operations

id    : M = M (refl)
α-1     : N = M  (sym)
β o α : M = P (trans)

-1
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P

β

id
α

points are 
elements
M:A

a space is a type A

paths are
proofs of equality
α : M =A N

path operations

id    : M = M (refl)
α-1     : N = M  (sym)
β o α : M = P (trans)

-1

homotopies
id o α = α
α-1 o α = id
γ o (β o α) 
   = (γ o β) o α 



Spaces as types

15

points are 
elements
M:A

a space is a type A

paths are
proofs of equality
α : M =A N

path operations

id    : M = M (refl)
α-1     : N = M  (sym)
β o α : M = P (trans)

homotopies
id o α = α
α-1 o α = id
γ o (β o α) 
   = (γ o β) o α 
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We can do
computer-checked proofs
in synthetic homotopy theory

Proofs are constructive*: can run them

Results apply in a variety of settings,
from simplicial sets (hence topological spaces)
to Quillen model categories and ∞-topoi*

New type-theoretic proofs/methods

*work in progress
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π1(S1)

π2(S2)
Hopf fibration
& π2(S2)

πn(Sn)

Freudenthal

Homotopy Theoretic Type Theoretic

π1(S1)

πn(Sn)
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1.π1(S1) = ℤ 

2.The Hopf fibration

3.Connectedness and Freudenthal Suspension
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1.π1(S1) = ℤ 

2.The Hopf fibration

3.Connectedness and Freudenthal Suspension
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Higher inductive types

20

Circle is inductively generated by 

base : Circle
loop : base = base

loop

base

Free ∞-groupoid with these generators

idloop-1
point

path

inv : loop o loop-1 = idid
loop-1
loop o loop

...
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Circle recursion:
  function Circle ! X determined by

base’ : X
loop’ : base’ = base’ 

loop

base

loop’
base’



Higher inductive types

21

Circle recursion:
  function Circle ! X determined by

base’ : X
loop’ : base’ = base’ 

Circle induction: To prove a predicate P for all points 
on the circle, suffices to prove P(base),
continuously in the loop

loop

base

loop’
base’
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Corollary: π1(S1) is isomorphic to ℤ
                

Definition. Ω(S1) is the space of loops at base
                   i.e. the type (base = base)
       
Theorem. Ω(S1) is equivalent to ℤ, 
                 by a map that sends o to +
Proof: two mutually inverse functions

winding : Ω(S1) ! ℤ
loopn   : ℤ ! Ω(S1) 0-truncation

(set of connected 
components)
of Ω(S1)

πk(S1) trivial otherwise
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Universal Cover

23

w : Ω(S1) ! ℤ
defined by lifting a loop
to the cover, and giving 
the other endpoint of 0

lifting loop adds 1

lifting loop-1 subtracts 1

Example:
    w(loop o loop-1)
= 0 + 1 - 1
= 0

lifting is functorial
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Fibration (classically):
 map p: E → B such that
 any path from p(e) to y
 lifts to a path in E from e
 to some point in p-1(y)

Family of types  (E(x))x:B
Fibers: E(b) is a type for all b:B
transport: equivalence E(b1)→E(b2) for all p:b1=Bb2

p-1(b)

sends e ∈ E(x) to other endpoint of lifting of p

∼
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family of types (Cover(x))x:S1

Fiber over base: ℤ
Equivalence ℤ  → ℤ as lifting of loop:
successor

∼

By circle recursion, it suffices to give
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family of types

uses univalence

(Cover(x))x:S1

Fiber over base: ℤ
Equivalence ℤ  → ℤ as lifting of loop:
successor

∼
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Universal Cover

25

family of types

Cover(base) := ℤ
transportCover(loop) := successor

uses univalence

(Cover(x))x:S1

Fiber over base: ℤ
Equivalence ℤ  → ℤ as lifting of loop:
successor

∼

By circle recursion, it suffices to give

Defining equations:
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starting at 0

= transportCover(loop-1 o loop, 0)



Winding number

26

w : Ω(S1) ! ℤ
w(p) = transportCover(p,0)

    w(loop-1 o loop)

lift p to cover, 
starting at 0

= transportCover(loop-1 o loop, 0)
= transportCover(loop-1, transportCover(loop,0))



Winding number

26

w : Ω(S1) ! ℤ
w(p) = transportCover(p,0)

    w(loop-1 o loop)

lift p to cover, 
starting at 0

= transportCover(loop-1 o loop, 0)
= transportCover(loop-1, transportCover(loop,0))
= transportCover(loop-1, 1)



Winding number

26

w : Ω(S1) ! ℤ
w(p) = transportCover(p,0)

    w(loop-1 o loop)

lift p to cover, 
starting at 0

= transportCover(loop-1 o loop, 0)
= transportCover(loop-1, transportCover(loop,0))
= transportCover(loop-1, 1)
= 0
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The book Computer-checked

Fundamental group of the circle
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1.π1(S1) = ℤ 

2.The Hopf fibration

3.Connectedness and Freudenthal Suspension
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The Hopf fibration

The Hopf fibration is a fibration with

• base S2

• fiber S1

• total space S3

S1
� �

��

S3

����

S2

The Hopf fibration is a family of circles, parametrized by S2
and

whose “union” is S3
.
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The Hopf fibration

The Hopf fibration is a fibration with

• base S2

• fiber S1

• total space S3

S1
� �

��

S3

����

S2

The Hopf fibration is a family of circles, parametrized by S2
and

whose “union” is S3
.
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Picture

c�Benoît R. Kloeckner CC-BY-NC



π1(S1) = Z The Hopf fibration

The spheres

Definition
The suspension of a space A (denoted ΣA) is generated by

• Two points n, s : ΣA
• For every a : A, a path m(a) : n =ΣA s

Definition

Sn+1 := ΣSn

•n

•s

A

ΣA
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Fibrations over S2

A fibration over S2 is given by
• a space A (over n)

• a space B (over s)
• a “circle of equivalences” between A and B (over m)

⇐⇒ a function e : S1 → (A � B)
⇐⇒ for every x : S1, an equivalence ex : A � B
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The Hopf fibration in HoTT

A fibration over S2 with fiber S1 and total space S3?

• S1 over n
• S1 over s
• for x : S1, the equivalence ex : S1 � S1 is the “rotation of

angle” x

Left to do:
• Define the rotation of angle x
• Prove that the total space is S3
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Rotations of S1

We want
e : S1 → (S1 � S1)

By definition of S1, we need
• an equivalence ebase : S1 � S1

• a homotopy e(loop) : ebase = ebase

e(loop) is the homotopy “turning once around the circle”.

•
base

loop
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Homotopy turning once around the circle

A homotopy idS1 = idS1 ⇐⇒ for every x : S1, a path x = x

We need:
• a path

p : base = base
• a (2-dimensional) path

q : p � loop = loop � p
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Homotopy turning once around the circle

A homotopy idS1 = idS1 ⇐⇒ for every x : S1, a path x = x

We need:
• a path

loop : base = base
• a (2-dimensional) path

refl
loop�loop

: loop � loop = loop � loop
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Total space

We just constructed a fibration with
• base S2

• fiber S1

What is the total space?
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Homotopy pushouts

Given a span

Y Xf�� g �� Z

Definition

The homotopy pushout Y �X Z is the space generated by
• For all y : Y , a point l(y) : Y �X Z
• For all z : Z , a point r(z) : Y �X Z
• For all x : X , a path g(x) : l(f (x)) = r(g(x))

The suspension of A is the homotopy pushout of

1 A�� �� 1
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Total space

By gluing/descent/flattening, the total space is the homotopy
pushout of:

S1 S1 × S1e�� p2 �� S1

This span is equivalent to the following:

S1 S1 × S1
p1�� p2 �� S1

whose total space is S1 � S1
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Join
Definition
The join of A and B is the homotopy pushout of

A A × Bp1�� p2 �� B

A B

A � B

We have
S0 � A = ΣA

(A � B) � C = A � (B � C)
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We have
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Total space

S1 � S1 = (ΣS0) � S1

= (S0 � S0) � S1

= S0 � (S0 � S1)

= Σ(ΣS1)

= S3

We have the Hopf fibration in homotopy type theory.
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Total space

S1 � S1 = (ΣS0) � S1

= (S0 � S0) � S1

= S0 � (S0 � S1)

= Σ(ΣS1)

= S3

We have the Hopf fibration in homotopy type theory.
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Long exact sequence
Long exact sequence of homotopy groups of the Hopf fibration:
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Long exact sequence
Long exact sequence of homotopy groups of the Hopf fibration:

.

.

.

��
0 �� π4(S3) ∼ �� π4(S2)

��
0 �� π3(S3) ∼ �� π3(S2)

��
0 �� 0 �� π2(S2)

∼

��Z �� 0 �� 0



π1(S1) = Z The Hopf fibration

Homotopy groups

Theorem

We have
π2(S2) = Z

πk(S2) = πk(S3) for k ≥ 3

In particular

Theorem

Assuming π3(S3) = Z
π3(S2) = Z
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π4(S3)

Theorem
There exists a natural number n such that π4(S3) � Z/nZ.

• Classical mathematics: cannot compute n, unless the proof is
nice enough

• Constructive mathematics: disallow the axiom of choice and
excluded middle =⇒ every proof is nice enough

In this case we can compute the value of n and get 2∗

∗work in progress
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1.π1(S1) = ℤ 

2.The Hopf fibration

3.Connectedness and Freudenthal Suspension



Part III: Freudenthal and friends

1. Truncatedness

2. Connectedness

3. Freudenthal Suspension Theorem

4. Further results
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Truncatedness

Definition
A type X is n-truncated (or an n-type) if, by induction on
n ≥ −2:

� n = −2: if X is contractible, i.e. X � 1;
� n > −2 : if each path space (x =X x�) of X is

(n − 1)-truncated.

Proposition

Suppose X is n-truncated, for n ≥ −1. Then πk(X, x0) � 1, for all
k > n and x0 : X.

[In Top and SSet, the converse holds; but not in all classical
settings, cf. Whitehead’s theorem and hypercompleteness.]
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Truncations

Definition
For any type X, and n ≥ −1, the n-truncation τnX is the higher
inductive type generated by:

� for x : X, an element [x]n : τnX;
� for f : Sn+1 → τnX, and t : Sn+1, a path f (t) = f (0).

Proposition

τnX is the free n-truncated type on X: any f : X → Y, with Y
n-truncated, factors uniquely through τnX.

[Classically: iteratively glue cells on to X to kill homotopy in
dimensions > n.]
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Connectedness (of types)

Definition
X is n-connected if τn+1X is contractible.

Proposition

TFAE:
� X is n-connected;
� every map from X to an n-type is constant;
� (when n ≥ 0) πk(X, x0) � 1, for all k ≤ n and x0 : X.

Connectedness (trivial low homotopy groups) is dual to
truncatedness (trivial high homotopy groups).
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Connectedness (of maps)
Definition
f : A → B is n-connected if each (homotopy) fiber f−1(b) is
n-connected. (Warning: indexing conventions vary by ±1.)

Proposition

TFAE:
� f is n-connected;
� f is weakly (or strongly) orthogonal to maps with n-truncated

fibers;
A ��

(n-conn) f
��

Y

p (n-trunc)
��

B ��

∃(!)

��

X
� f is equivalent to the inclusion of A into some extension by cells

of dimensions > n.
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Additivity of connectedness

Lemma (Wedge-product connectedness)

Suppose (X, x0) is i-connected, (Y, y0) is j-connected. Then the
inclusion X �1 Y �→ X × Y is (i + j)-connected.

y0
1-cell

x0

1-cell
�→ Y

X

2-cell

Type-theoretically: to define a function of two variables f (x, y)
into an (i + j)-type, enough to define in the cases f (x0, y) and
f (x, y0), agreeing in the case f (x0, y0).
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Freudenthal
Definition
Recall: the suspension ΣX is generated by

� N, S : ΣX;
� for each x : X, a path m(x) : N =ΣX S.

Theorem (Freudenthal Suspension Theorem)

Suppose (X, x0) is n-connected. Then the canonical map
X → Ω(ΣX,N) is 2n-connected.

N

X

S

Idea: want X → Ω(ΣX,N) to be an equivalence.
Generally (e.g. for ΣS1 � S2) it isn’t; but within
a certain dimension range, it is.

Important application: stable homotopy groups
of spheres.
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Proof: weak Freudenthal

For now, prove a weaker statement. (Same approach, with

more work, yields full FST.)

Theorem (Weak Freudenthal)

Suppose (X, x0) is n-connected. Then the canonical map
τ2n(X) → τ2nΩ(ΣX,N) is an equivalence.

Proof.

Heuristic: to prove a result of the form X ≈ Ω(Y, y0), generalise

X to a dependent type X̄y over y : Y, with X̄y0
� X, and prove

X̄y ≈ (y0 =Y y) for all y : Y.

So: define type X̄y depending on y : ΣX, and maps

m̄y : X̄y → τ2n(N = y), using universal property of ΣX.
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Weak Freudenthal, cont’d

Proof.
To give X̄y, m̄y for all y : ΣX, need:

� types and maps m̄N : X̄N → τ2n(N = N), and
m̄S : X̄S → τ2n(N = S);

� transport equivalences transportX̄m(x1) : X̄N → X̄S, for
each x1 : X, commuting with m̄N, m̄S.

over S : m̄S := τ2n(m) : τ2n(X) → τ2n(N = S)
over N : m̄N := τ2n(x �→ m(x) ◦ m(x0)−1) : τ2n(X) → τ2n(N = N)

and over m(x), need to define for each x1 : X the action
transportX̄(m(x),−) : X̄N → X̄S.
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Weak Freudenthal, cont’d

Proof.

. . . transport over m(x1): need to give, for each x1 : X and

z : X̄N = τ2n(X), some element of X̄S = τ2n(X).

Since RHS is 2n-truncated, may assume z is of form [x2], some

x2 : X. Also, by wedge-product connectedness lemma, enough

to assume one of x1, x2 is x0. So: when x1 = x0, return [x2].
When x2 = x0, return [x1]. (Check: when x1 = x2 = x0, these

agree)

(Roughly: defining a multiplication X × τ2n(X) → τ2n(X), with

x0 as a two-sided unit.)

So: have m̄y : X̄y → (N = y), for all y : ΣX.

Define converse n̄y : (N = y) → X̄y by ny(p) := transportX̄[x0].
Not hard to prove m̄, n̄ mutually inverse; so, each m̄y is an

equivalence, as desired.
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Consequences

From (weak) Freudenthal, immediately have:

Corollary (Homotopy groups of spheres stabilise)

πn+k(Sn) � πn+1+k(Sn+1), for n ≥ k + 2.

In particular,

Corollary

πn(Sn) � Z, for all n ≥ 1.

Proof.

� n = 1: by universal cover.

� n = 2: by LES of Hopf fibration.

� n ≥ 2: by stabilisation.
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πk(Sn) in HoTT
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More results
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James construction

Refinement of Freudenthal: describes Ω(ΣX) precisely, via a
filtration.

Theorem
Suppose (X, x0) is n-connected, for n ≥ 0. There is a sequence

1 �� X �� J2(X) �� J3(X) �� J4(X) �� · · ·

with the maps having respective connectivities (n − 1), 2n, (3n + 1),
. . . , and such that J∞(X) := lim−→n Xn � Ω(ΣX).

Conceptually, J∞(X) is the free monoid on X; as X is connected,
this is the free group on X.
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Blakers–Massey

Generalization of Freudenthal: describes path spaces in
pushouts.

Theorem (Blakers–Massey theorem)

Suppose given maps f , g as below, with f i-connected, g j-connected.

Z

f
��

g
�� Y

inr
��

X inl �� X �Z Y

Then for all x : X, y : Y, the canonical map Zx,y → (inl x = inr y) is
(i + j)-connected.
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van Kampen

Another tool for pushouts of types:

Theorem (van Kampen theorem)

For any pointed maps f : Z → X and g : Z → Y, with Z 0-connected,
the fundamental group of the pushout of f and g is the amalgamated
free product (pushout of groups) of π1(X) and π1(Y) over π1(Z):

π1(X �Z Y) � π1(X) ∗π1(Z) π1(Y).

Can also be generalised to non-connected Z.
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Covering spaces

The (beautiful) classical theory of covering spaces transfers
straightforwardly. In particular:

Definition
A covering space of a connected type X is a dependent family
of 0-types over X.

Theorem
Covering spaces of X correspond to sets with an action of π1(X).
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Eilenberg–Mac Lane spaces; cohomology

Eilenberg–Mac Lane spaces of Abelian groups can be

constructed as HIT’s:

Theorem

For any (n-truncated) Abelian group G and natural number n > 0,
there is a type K(G, n) such that πn(K(G, n)) � G, and
πn(K(G, n)) � 1 for k �= n.

These (and other spectra) can be used to define cohomology of

types.
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We can do
computer-checked proofs
in synthetic homotopy theory
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π1(S1) = ℤ

πk<n(Sn) = 0
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π1(S1) = ℤ

πk<n(Sn) = 0

π2(S2) = ℤ 

Hopf fibration

π3(S2) = ℤ 

πn(Sn) = ℤ

Freudenthal

π4(S3) = ℤ?
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Construction
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